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In our previous study, we investigated a classical XY model on a circle by adopting the
Mexican-hat type interaction, which is composed of uniform and location-dependent
interactions. We solved the saddle point equations numerically and found three non-
trivial solutions. In this study, we determined the phases of complex order parameters
and derived the saddle point equations for stable and unstable nontrivial solutions and
the formula of boundaries of bistable regions analytically. We performed Markov Chain
Monte Carlo simulations and confirmed that the numerical and theoretical results agree
well.

KEYWORDS: XY model, Mexican-hat interaction, saddle point equations, bistability

§1. Introduction

Over these past years, we have been studying the synchronization - desynchronization phase

transition of oscillator networks.1 In particular, we have studied the phase oscillator network2–4

with the Mexican-hat type interaction on a circle. This type of interaction was introduced to model

the feature extraction cells in neurosciences5,6 and to express effects of excitation of nearby neurons

and inhibition of distant neurons.

In the course of the analysis of the phase oscillator network, it turned out that information on

the phases of complex order parameters is necessary. Therefore, we studied the XY model on a

circle with the same interaction as the phase oscillator network, because both models coincide with

each other under some conditions.

In the XY model, we found three nontrivial solutions of the saddle point equations (SPEs), the

uniform (U), spinning (S), and pendulum (Pn) solutions.7 We confirmed the agreement between the

theoretical and numerical results, and drew phase diagrams by performing numerical simulations.

In this study, we theoretically determined the phases of complex order parameters that enabled

us to derive the self-consistent equations (SCEs) of the amplitudes of complex order parameters

in the phase oscillator network. We derived the SPEs of the amplitudes of complex order param-
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eters for stable and unstable nontrivial solutions as well. Furthermore, we derived the formula of

boundaries of bistable regions by identifying and using the unstable Pn solution. We performed

Markov Chain Monte Carlo (MCMC) simulations and found that the numerical and theoretical

results agree well.

The structure of this paper is as follows. In §2, we formulate the model. In §3 and §4, we
analyze the model with only the location-dependent interaction, and the model with both the

uniform and location-dependent interactions, respectively. We derive the formula of boundaries of

bistable regions in §5. Summary and discussion are given in §6. In Appendix, we give the detailed

derivation of the SPEs.

§2. Formulation

Let us consider the classical XY model. We assume that the magnitude of the XY spin

X = (X,Y ) is 1. Let φi be the phase of the i-th spin Xi = (Xi, Yi),

Xi = cosφi, Yi = sinφi. (1)

The Hamiltonian H and the interaction Jij between the i-th and j-th spins are given by

H = −
∑
i<j

Jij cos(φi − φj), (2)

Jij =
J0
N

+
J1
N

cos(θi − θj), θi = i
2π

N
, i = 0, · · · , N − 1. (3)

Here, θi is the coordinate of the i-th spin on the unit circle. The interaction Jij has the property of

the Mexican-hat type interaction. Now, we introduce the following three complex order parameters:

W = ReiΘ =
1

N

∑
j

eiφj , (4)

Wc = Rce
iΘc =

1

N

∑
j

cos θje
iφj , (5)

Ws = Rse
iΘs =

1

N

∑
j

sin θje
iφj . (6)

By using R and R1 =
√

R2
c +R2

s, H is rewritten as

H = −N

2
(J0R

2 + J1R
2
1) +

1

2
(J0 + J1). (7)

We introduce different expressions of order parameters as

RR = R cosΘ =
1

N

∑
j

cosφj , RI = R sinΘ =
1

N

∑
j

sinφj ,

RcR = Rc cosΘc =
1

N

∑
j

cos θj cosφj , RcI = Rc sinΘc =
1

N

∑
j

cos θj sinφj ,

RsR = Rs cosΘs =
1

N

∑
j

sin θj cosφj , RsI = Rs sinΘs =
1

N

∑
j

sin θj sinφj .



Analysis of XY model with Mexican-hat interaction on a circle 3

Introducing their conjugate variables and using the relations∫
dRRδ(RR − 1

N

∑
j

cosφj) = 1,

δ(RR − 1

N

∑
j

cosφj) =
N

2πi

∫
dR̂Re

−NR̂R(RR− 1
N

∑
j cosφj),

the partition function Z is expressed as

Z = Tr exp[−βH] = Tr exp[β
N

2
(J0R

2 + J1R
2
1)−

β

2
(J0 + J1)]

= e−
β
2
(J0+J1)

(
N

2πi

)6 ∫
dReNG,

G = G0 +G1,

G0 =
β

2
(J0R

2 + J1R
2
1)

−(R̂RRR + R̂IRI + R̂cRRcR + R̂cIRcI + R̂sRRsR + R̂sIRsI),

eNG1 = exp[
∑
j

ln

∫
dφj exp{Aj cosφj +Bj cosφj}],

Aj = R̂R + R̂cR cos θj + R̂sR sin θj ,

Bj = R̂I + R̂cI cos θj + R̂sI sin θj ,

Tr =

∫
dφ = dφ1dφ2 · · · dφN ,

dR = dR̂RdRRdR̂IdRIdR̂cRdRcRdR̂cIdRcIdR̂sRdRsRdR̂sIdRsI .

Here, we put β =
1

T
, and T is ‘temperature’. Under optimal conditions of G with respect to

RR, RI , and so forth, we obtain

R̂R = βJ0RR, R̂I = βJ0RI ,

R̂cR = J1RcR, R̂cI = J1RcI , R̂sR = J1RsR, R̂sI = J1RsI . (8)

Thus, G0 is expressed as

G0 = −β

2
(J0R

2 + J1R
2
1). (9)

By introducing Cj and φ0
j as

Aj cosφj +Bj sinφj = Cj cos(φj − φ0
j ),

Cj =
√

A2
j +B2

j , Cj cosφ
0
j = Aj , Cj sinφ

0
j = Bj ,

G1 is now expressed by

G1 =
1

N

∑
j

ln

∫
dφje

Aj cosφj+Bj sinφj =
1

N

∑
j

ln

∫
dφje

Cj cos(φj−φ0
j )

=
1

N

∑
j

ln{2πI0 (βΞ(θ))} =
1

2π

∫ 2π

0
dθ ln{2πI0 (βΞ(θ))}, (10)
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where In(z) and Ξ(θj) are defined by

In(z) =
1

2π

∫ 2π

0
dφ cosnφ ez cosφ, (11)

Ξ(θj) =

√
(
Aj

β
)2 + (

Bj

β
)2

= [{J0RR + J1 (RcR cos θj +RsR sin θj)}2

+{J0RI + J1 (RcI cos θj +RsI sin θj)}2]1/2. (12)

By introducing Θ̃c ≡ Θc −Θ and Θ̃s ≡ Θs −Θ, Ξ(θ) is further rewritten as

Ξ(θ)2 =

(J0R)2 + J2
1{(Rc cos θ)

2 + (Rs sin θ)
2 + 2RcRs cos(Θ̃c − Θ̃s) sin θ cos θ}

+2J0J1R{Rc cos Θ̃c cos θ +Rs cos Θ̃s sin θ}. (13)

The free energy f per spin is expressed by

f = − 1

βN
lnZ = − 1

βN
G. (14)

Therefore, G and f depend only on R,Rc, Rs, Θ̃c, and Θ̃s.

2.1 J0 > 0, J1 = 0, the case of ferromagnetic interactions

In this case, Ξ(θ) and f are expressed by

Ξ(θ) = J0R (15)

f =
1

2
J0R

2 − 1

β
ln{2πI0 (βJ0R)) , (16)

and SPE becomes

R =
I1(βJ0R)

I0(βJ0R)
. (17)

It turns out that this is the stable U solution in which R > 0 and R1 = 0. The critical temperature

is given by

T0,c =
J0
2
. (18)

§3. Case of J0 = 0 and J1 > 0

Ξ(θ) and f are given by

Ξ(θ) = J1

√
(Rc cos θ)2 + (Rs sin θ)2 + 2RcRs cos Θ̂ sin θ cos θ, (19)

f =
1

2
J1R

2
1 −

1

β

1

2π

∫ 2π

0
dθ ln{2πI0 (βΞ(θ))}, (20)
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where Θ̂ = Θ̃c − Θ̃s. f depends only on Rc, Rs, and Θ̂. From the optimal condition of f with

respect to Θ̂, we obtain

1

2π

∫ 2π

0
dθ

I1(βΞ)

I0(βΞ)

1

Ξ
sin θ cos θ sin Θ̂ = 0. (21)

The following two cases are deduced under this condition:

Case 1 sin Θ̂ = 0, (22)

Case 2
1

2π

∫ 2π

0
dθ

I1(βΞ)

I0(βΞ)

1

Ξ
sin θ cos θ = 0. (23)

In the following, we study these cases separately.

3.1 Case 1

From the condition sin Θ̂ = 0, Θ̂ = 0 and π follow in mod 2π. Thus, we have the equation

R1 =
2

π

∫ π/2

0
dθ

I1(βJ1R1 cos θ)

I0(βJ1R1 cos θ)
cos θ. (24)

It turns out that this is the equation for an unstable solution, because simulation results do not

agree with the solution of this equation.

3.2 Case 2

We change the integration range from [0, 2π] to [−π, π] for convenience in eq. (23). The

necessary and sufficient condition for eq. (23) is that the Fourier series expansion of the integrand

does not contain the term sin(2θ). That is, the condition is

RcRs cos Θ̂ = 0. (25)

This implies

Θ̂ = ±π

2
or Rc = 0, or Rs = 0. (26)

The SPEs become

Ξ(θ) = J1Ξ̂(θ), (27)

Ξ̂(θ) =

√
R2

c cos
2 θ +R2

s sin
2 θ, (28)

Rc = Rc
1

π

∫ π

0
dθ

I1(βJ1Ξ̂)

I0(βJ1Ξ̂)

1

Ξ̂
cos2(θ), (29)

Rs = Rs
1

π

∫ π

0
dθ

I1(βJ1Ξ̂)

I0(βJ1Ξ̂)

1

Ξ̂
sin2(θ). (30)

Let us consider three cases separately.

Case of Θ̂ = ±π
2

Let us define θ0 as

R1 cos θ0 = Rc, R1 sin θ0 = Rs, 0 ≤ θ0 ≤
π

2
. (31)
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Then, defining Ξ̄(θ) ≡
√

1 + cos(2θ0) cos(2θ), we have

Ξ̂(θ) =
R1√
2

√
1 + cos(2θ0) cos(2θ) =

R1√
2
Ξ̄(θ). (32)

Under the optimal condition of f with respect to θ0, we obtain

1

2π

∫ 2π

0
dθβJ1R1

1√
2Ξ̄

(− sin 2θ0 cos 2θ)
I1(βJ1R1Ξ̄/

√
2)

I0(βJ1R1Ξ̄/
√
2)

= 0. (33)

Thus, the necessary and sufficient condition for this is sin 2θ0 = 0 or the coefficient of cos 2θ in Ξ̄

is 0. Therefore,

sin 2θ0 = 0 or cos 2θ0 = 0. (34)

When sin 2θ0 = 0, θ0 = 0 or π
2 follows. Then, Rc = R1, Rs = 0, or Rs = R1, Rc = 0 follows. When

cos 2θ0 = 0, θ0 =
π
4 follows, and we obtain Rc = Rs =

1√
2
R1.

Case of Rc = 0, or Rs = 0

This case already appears in the previous case.

Therefore, the possible solutions for case 2 are (Rc = R1, Rs = 0) or (Rs = R1, Rc = 0) or

(Rc = Rs =
1√
2
R1).

For the case of (Rc = R1, Rs = 0) or (Rs = R1, Rc = 0), the SPE turns out to be the same as

in case 1, eq. (24).

For the last case, Rc = Rs =
1√
2
R1, the SPE is

Rc =
1

2

I1(βJ1Rc)

I0(βJ1Rc)
. (35)

The critical temperature is given by

T1,c =
J1
4
. (36)

Numerical results. We performed MCMC simulations. In Fig. 1, we display the theoretical

and simulation results for J0 = 0 and J1 = 1. The agreement between the theoretical result (eq.

(35)) and simulation result is good. That is, eq. (35) is the SPE of the stable S solution in which

R = 0 and R1 > 0.
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Fig. 1. Temperature dependences of order parameters. N = 10000. Curves: theory, eq. (35). Symbols: simulation.
(a) Solid curve and +: R. Dashed curve and ×: R1. (b) Solid curve denotes Rc and Rs. +: Rc, ×: Rs．Vertical
lines are error bars.

§4. Case of J0J1 6= 0

The optimal conditions of f with respect to Θ̃c and Θ̃s are given by

∂f

∂Θ̃c

= 0 : (37)

1

2π

∫ 2π

0
dθ

I1(βΞ)

I0(βΞ)

1

Ξ
[−J2

1RcRs sin(Θ̃c − Θ̃s) sin θ cos θ

−J0J1RRc sin Θ̃c cos θ] = 0 (38)
∂f

∂Θ̃s

= 0 : (39)

1

2π

∫ 2π

0
dθ

I1(βΞ)

I0(βΞ)

1

Ξ
[J2

1RcRs sin(Θ̃c − Θ̃s) sin θ cos θ

−J0J1RRs sin Θ̃s sin θ] = 0. (40)

By adding eqs. (38) and (40), we obtain

R

∫ 2π

0
dθ

I1(βΞ)

I0(βΞ)

1

Ξ
(Rc sin Θ̃c cos θ +Rs sin Θ̃s sin θ) = 0. (41)

Defining R̃ and θ as

Rc sin Θ̃c cos θ +Rs sin Θ̃s sin θ = R̃ cos(θ − θ), (42)

R̃ cos θ = Rc sin Θ̃c, R̃ sin θ = Rs sin Θ̃s, (43)

R̃ =

√
(Rc sin Θ̃c)2 + (Rs sin Θ̃s)2, (44)

we obtain

R̃

∫ 2π

0
dθ

I1(βΞ)

I0(βΞ)

1

Ξ
cos(θ − θ) = 0. (45)
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We define θ′ =
π

2
− (θ − θ) and Ξ̃(θ′) = Ξ(θ +

π

2
− θ′). Thus, by changing the integral range from

[0, 2π] to [−π, π], eq. (45) reduces to

R̃

∫ π

−π
dθ

I1(βΞ̃(θ))

I0(βΞ̃(θ))

1

Ξ̃(θ)
sin θ = 0. (46)

Below, firstly, we consider the case of R̃ 6= 0 and then the case of R̃ = 0.

4.1 Solutions for R̃ 6= 0

The necessary and sufficient condition for eq. (46) is that Ξ̃(θ) does not have the term sin θ.

Since Ξ̃(θ)2 is rewritten as

Ξ̃(θ)2 =

[J0R+
J1

R̃
{(Rc cos Θ̃c sin Θ̃c +Rs cos Θ̃s sin Θ̃s) sin θ −RcRs sin(Θ̃c − Θ̃s) cos θ}]2

+J2
1 R̃

2 sin2 θ, (47)

the condition is

Rc sin 2Θ̃c +Rs sin 2Θ̃s = 0. (48)

Thus, the necessary and sufficient condition for eq. (48) is as follows:

(1) Case of RcRs 6= 0.

sin 2Θ̃c = 0 and sin 2Θ̃s = 0.

That is,

{Θ̃c = (0,±π

2
, π) ( mod 2π)} and {Θ̃s = (0,±π

2
, π) ( mod 2π)}.

Hereafter, we omit ‘mod 2π’ for simplicity.

(2) Case of Rc = 0.

Rs 6= 0 and {Θ̃s = (0,±π

2
, π)}.

(3) Case of Rs = 0.

Rc 6= 0 and {Θ̃c = (0,±π

2
, π)}.

Now, let us find the solution in each case. To simplify the descriptions, we introduce the following

notations:

〈g(θ)〉 =
1

2π

∫ 2π

0
dθ

I1(βΞ̃(θ))

I0(βΞ̃(θ))

1

Ξ̃(θ)
g(θ) (49)

Ξ̃(θ) = Ξ(θ +
π

2
− θ)

=

√(
J0R− J1

R̃
RcRs sin(Θ̃c − Θ̃s) cos θ

)2

+ J2
1 R̃

2 sin2 θ. (50)
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Thus, eqs. (38) and (40) become

〈−J2
1RcRs sin(Θ̃c − Θ̃s) sin 2(θ − θ)− 2J0J1RRc sin Θ̃c sin(θ − θ)〉 = 0, (51)

〈J2
1RcRs sin(Θ̃c − Θ̃s) sin(2θ − θ)− 2J0J1RRs sin Θ̃s cos(θ − θ)〉 = 0. (52)

These equations (51) and (52) reduce to the same equation as

J2
1RcRs sin(Θ̃c − Θ̃s) sin(2θ)〈cos(2θ)〉

+
2

R̃
J0J1RRc sin Θ̃cRs sin Θ̃s〈cos θ〉 = 0. (53)

Here, we summarize the results of analysis of eq. (53). See Appendix A.1 for the derivation.

Solution 1. Case of (Θ̃c, Θ̃s) = (±π
2 ,±

π
2 )

Ξ(θ) =
√

(J0R)2 + (J1R1 sin θ)2, (54)

f =
1

2
(J0R

2 + J1R
2
1)−

1

β

2

π

∫ π/2

0
dθ ln{2πI0(βΞ̃(θ))}, (55)

R = RJ0
2

π

∫ π/2

0
dθ

I1(βΞ̃)

I0(βΞ̃)

1

Ξ̃
, (56)

R1 = R1J1
2

π

∫ π/2

0
dθ

I1(βΞ̃)

I0(βΞ̃)

1

Ξ̃
sin2(θ). (57)

From numerical results, this solution turns out to be the stable Pn solution.

Solution 2. Case of (Θ̃c, Θ̃s) = (0, π2 ) and solution 3. Case of (Θ̃c, Θ̃s) = (0,−π
2 )

Ξ̃(θ) =
√

(J0R+ J1Rc cos θ)2 + (J1Rs sin θ)2. (58)

When R = 0, this solution gives the spinning solution of J0 = 0.

Solution 4． Case of (Θ̃c, Θ̃s) = (π2 , 0) and solution 5． Case of (Θ̃c, Θ̃s) = (−π
2 , 0)

R̃ = Rc, θ = 0, (59)

Ξ̃(θ) =
√

(J0R− J1Rs cos θ)2 + (J1Rc sin θ)2. (60)

If we put θ = π/2 − θ′, we have Ξ̂(θ′) ≡ Ξ̃(π/2 − θ′) =
√

(J0R− J1Rs sin θ′)2 + (J1Rc cos θ′)2.

Then, when R = 0, this gives the spinning solution of J0 = 0.

These solutions except for solution 1 are unstable, which we will investigate later.

The solutions for the case of R̃ = 0 are derived from the solutions for the case of R̃ 6= 0. See

Appendix A.2.

4.2 Analysis of SPEs (56) and (57), stable Pn solution

In this section, we analyze solution 1, which is the stable Pn solution.
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4.2.1 Phase transition points

SPEs are

R = RJ0
2

π

∫ π/2

0
dθ

I1(βΞ̃)

I0(βΞ̃)

1

Ξ̃
, (61)

R1 = R1J1
2

π

∫ π/2

0
dθ

I1(βΞ̃)

I0(βΞ̃)

1

Ξ̃
sin2 θ, (62)

Ξ̃ =
√

(J0R)2 + (J1R1 sin θ)2. (63)

When R � 1 and R1 � 1, Ξ̃ � 1 follows, and then we have

I0(βΞ̃) ' 1

2π

∫ 2π

0
dφ

(
1 + βΞ̃ cosφ+

1

2
(βΞ̃)2(cosφ)2

)
= 1 +

1

4
(βΞ̃)2, (64)

I1(βΞ̃) ' 1

2π

∫ 2π

0
dφ cosφ

(
1 + βΞ̃ cosφ+

1

2
(βΞ̃)2(cosφ)2

)
=

1

2
βΞ̃, (65)

I1
I0

' 1

2
βΞ̃. (66)

Thus, SPEs become

R ' RJ0
2

π

∫ π/2

0
dθ

1

2
β = RJ0

1

2
β. (67)

R1 ' R1J1
2

π

∫ π/2

0
dθ

1

2
β sin2(θ) = R1J1

1

4
β. (68)

Therefore, we derive

T0,c =
J0
2
, (69)

T1,c =
J1
4
. (70)

The former is the critical temperature for the U solution and the latter is that for the S solution.

4.2.2 SPEs for T → 0

When T � 1 ( β � 1), we have

I0(βΞ̃) =
1

2π

∫ π

−π
dφeβΞ̃ cosφ ' 1

2π

∫ ∞

−∞
dφeβΞ̃(1−

1
2
φ2) =

1

2π

√
2π

βΞ̃
eβΞ̃, (71)

I1(βΞ̃) =
1

2π

∫ π

−π
dφ cosφeβΞ̃ cosφ ' 1

2π

∫ ∞

−∞
dφeβΞ̃(1−

1
2
φ2) ' I0(βΞ̃). (72)

Therefore, I1(βΞ̃)

I0(βΞ̃)
' 1 follows. Thus, the SPEs are

R ' RJ0
2

π

∫ π/2

0
dθ

1

Ξ̃
, (73)

R1 ' R1J1
2

π

∫ π/2

0
dθ

1

Ξ̃
sin2 θ. (74)
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Let us define

k ≡ J1R1

J0R
= J

R1

R
, (75)

J ≡ J1
J0

. (76)

Then, Ξ̃ = J0R
√

1 + k2 sin2 θ follows. Thus, we have

R ' 2

π

∫ π/2

0
dθ

1√
1 + k2 sin2 θ

, (77)

R1 ' k
2

π

∫ π/2

0
dθ

1√
1 + k2 sin2 θ

sin2 θ. (78)

4.2.3 Appearance of Pn solution when T → 0

Let us assume 0 < k � 1. Then, we have

R ' 2

π

∫ π/2

0
dθ

1√
1 + k2 sin2 θ

' 2

π

∫ π/2

0
dθ

(
1− k2

2
sin2 θ

)
= 1− k2

4
, (79)

R1 ' k
2

π

∫ π/2

0
dθ

(
1− k2

2
sin2 θ

)
sin2 θ = k(

1

2
− 3k2

16
). (80)

By using R1 = kR/J , we obtain

R =
J

3J − 4
, (81)

R1 =
kR

J
=

2
√
2
√
J − 2

(3J − 4)3/2
, (82)

k2 =
8(J − 2)

3J − 4
. (83)

Therefore, the Pn solution emerges for J > 2, that is, for J1 > 2J0. From this analysis, it turns

out that the Pn solution bifurcates from the U solution.

4.2.4 Appearance of Pn solution at finite temperatures

Let us assume R > 0 and R1 � 1. Then, k � 1 follows. Since Ξ̃ is expressed as

Ξ̃ = J0R
√

1 + k2 sin2 θ ' J0R(1 +
1

2
k2 sin2 θ), (84)
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we have

I0(βΞ̃) =
1

2π

∫ 2π

0
dφeβΞ̃ cosφ ' 1

2π

∫ 2π

0
dφeβJ0R cosφeβJ0R

1
2
k2 sin2 θ cosφ

' 1

2π

∫ 2π

0
dφeβJ0R cosφ(1 + βJ0R

1

2
k2 sin2 θ cosφ)

= I0(βJ0R) + βJ0R
1

2
k2 sin2 θI1(βJ0R) (85)

I1(βΞ̃) ' I1(βJ0R) + βJ0R
1

2
k2 sin2 θI2(βJ0R), (86)

I1(βΞ̃)

I0(βΞ̃)
=

I1(βJ0R) +O(k2)

I0(βJ0R) +O(k2)
' I1(βJ0R)

I0(βJ0R)
. (87)

Therefore, the SPE for R becomes

R ' RJ0
2

π

∫ π/2

0
dθ

I1(βΞ̃)

I0(βΞ̃)

1

Ξ̃

1

J0R
(1− k2

2
sin2 θ)

' 2

π

∫ π/2

0
dθ

I1(βJ0R)

I0(βJ0R)
=

I1(βJ0R)

I0(βJ0R)
. (88)

This is the equation for R when J1 = 0, that is, this is the equation for the U solution. The

equation for R1 is

R1 = R1J1
2

π

∫ π/2

0
dθ

I1(βΞ̃)

I0(βΞ̃)

1

Ξ̃
sin2(θ) ' k

2

π

∫ π/2

0
dθ

I1(βΞ̃)

I0(βΞ̃)
(1− k2

2
sin2 θ)

' k
2

π

∫ π/2

0
dθ

I1(βJ0R)

I0(βJ0R)
sin2 θ =

kR

2
. (89)

Therefore, we have

R1 =
kR

2
=

J1R1

J0R

R

2
=

J1R1

2J0
,

1 =
J1
2J0

,

Jc = 2 =

(
J1
J0

)
c

. (90)

Thus, it turns out that the Pn solution bifurcates from the U solution at Jc = 2 in the finite

temperature as well.

4.2.5 Numerical results

In Fig. 2, we display the temperature dependences of order parameters for J0 = 1 and J1 = 2.1.

Theoretical results are obtained by numerically solving the SPEs (56) and (57) for the Pn solution,

and the SPE (35) for the S solution. The theoretical and numerical results agree well.
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§5. Determination of Phase Boundaries of Bistable Regions

In this section, we study the boundaries of several phases in (J0, J1) space. We showed that

the boundary between the U and Pn phases is given by J1 = 2J0 in the previous section. In this

section, we study the boundary between the S and U phases and that between the Pn and S phases.

5.1 Boundary between the S and U phases

As noted in Ref. 7, when βJ1 is reduced by fixing βJ0 to 4, an unstable Pn solution and a

stable S solution merge, and an unstable S solution appears. See Fig. 3(b). At the parameter

where the stable U solution disappears, the R of the Pn solution is 0, and the R1 values of the Pn

and S solutions are the same. Before and after the disappearance of the stable S solution, there

exists a stable U solution. Thus, the boundary between the S and U solutions is where the stable

S solution disappears. Solutions 2 and 4 for the Pn solution coincide when Rc = Rs, and these

solutions give the spinning solutions when R = 0. Therefore, it is considered that solution 2 is the

unstable Pn solution. We do not assume Rc = Rs, but it is proved that this relation holds at the

boundary. The quantities we treat are

f =
1

2
(J0R

2 + J1R
2
1)−

1

β

1

π

∫ π

0
dθ ln{2πI0(βΞ̃(θ))}, (91)

Ξ̃(θ) =
√

(J0R+ J1Rc cos θ)2 + (J1Rs sin θ)2. (92)

The SPEs are

R = 〈J0R+ J1Rc cos θ〉, (93)

Rc = 〈(J0R+ J1Rc cos θ) cos θ〉, (94)

Rs = J1Rs〈sin2 θ〉, (95)

〈A〉 = 1

π

∫ π

0
dθ

I1(βΞ̃(θ))

I0(βΞ̃(θ))

1

Ξ̃(θ)
A, (96)

In(z) =
1

2π

∫ 2π

0
dφez cosφ cos(nφ). (97)

Assuming R � 1, the Taylor expansion of Ξ̃(θ) up to O(R) becomes

Ξ̃(θ) ' J1Ξ̃0(θ)
(
1 +

J0Rc cos θ

J1Ξ̃0(θ)2
R
)
, (98)

Ξ̃0(θ) =
√

(Rc cos θ)2 + (Rs sin θ)2. (99)
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Therefore, I0 and I1 are expressed as

I0(βΞ̃(θ)) ' 1

2π

∫ 2π

0
dφeβJ1Ξ̃0(θ) cosφ

(
1 +

βJ0Rc cos θ

Ξ̃0(θ)
R cosφ

)
= I0(βJ1Ξ̃0(θ)) + I1(βJ1Ξ̃0(θ))

βJ0Rc cos θ

Ξ̃0(θ)
R,

I1(βΞ̃(θ)) ' 1

2π

∫ 2π

0
dφeβJ1Ξ̃0(θ) cosφ

(
1 +

βJ0Rc cos θ

Ξ̃0(θ)
R cosφ

)
cosφ

= I1(βJ1Ξ̃0(θ)) +
1

2

(
I0(βJ1Ξ̃0(θ)) + I2(βJ1Ξ̃0(θ))

)βJ0Rc cos θ

Ξ̃0(θ)
R.

Thus, the SPEs are

R ' J0R〈1〉0 + J1Rc〈cos θ〉, (100)

Rc ' J0R〈cos θ〉0 + J1Rc〈cos2 θ〉, (101)

Rs ' J1Rs〈sin2 θ〉, (102)

〈A〉0 =
1

π

∫ π

0
dθ

I1(βJ1Ξ̃0(θ))

I0(βJ1Ξ̃0(θ))

1

J1Ξ̃0(θ)
A. (103)

Since 〈cos θ〉0 = 0, taking the limit R → 0 in eqs. (101) and (102), 〈cos2 θ〉0 = 〈sin2 θ〉0 follows

exactly when RcRs 6= 0. This implies Rc = Rs at the phase boundary. Thus, we have the following

relations:

Ξ̃0(θ) = Rc =
R1√
2
,

Ξ̃(θ) ' J1Rc + J0R cos θ,

I0(βΞ̃(θ)) ' I0(J̄1Rc) + I1(J̄1Rc)J̄0R cos θ,

I1(βΞ̃(θ)) ' I1(J̄1Rc) +
1

2

(
I0(J̄1Rc) + I2(J̄1Rc)

)
J̄0R cos θ,

I1(βΞ̃(θ))

I0(βΞ̃(θ))
' I1(J̄1Rc)

I0(J̄1Rc)

1 + 1
2

(
I0(J̄1Rc)+I2(J̄1Rc)

I1(J̄1Rc)

)
J̄0R cos θ

1 + J̄0R cos θ I1(J̄1Rc)
I0(J̄1Rc)

' I1(J̄1Rc)

I0(J̄1Rc)
[1 +

(I0(J̄1Rc) + I2(J̄1Rc)

2I1(J̄1Rc)
− I1(J̄1Rc)

I0(J̄1Rc)

)
J̄0R cos θ],

1

Ξ̃(θ)
' 1

J1Rc(1 +
J0R
J1Rc

cos θ)
' 1

J1Rc
(1− J0R

J1Rc
cos θ),

I1(βΞ̃(θ))

I0(βΞ̃(θ))

1

Ξ̃(θ)
' I1(J̄1Rc)

I0(J̄1Rc)

1

J1Rc

×[1 +
(I0(J̄1Rc) + I2(J̄1Rc)

2I1(J̄1Rc)
− I1(J̄1Rc)

I0(J̄1Rc)
− 1

J̄1Rc

)
J̄0R cos θ.]
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Here, we put J̄n = βJn. By using these relations, 〈cos θ〉 is expressed as

〈cos θ〉 =
1

π

∫ π

0
dθ

I1(βΞ̃(θ))

I0(βΞ̃(θ))

1

Ξ̃(θ)
cos θ

' 1

π

∫ π

0
dθ

I1(J̄1Rc)

I0(J̄1Rc)

1

J1Rc

×[cos θ +
(I0(J̄1Rc) + I2(J̄1Rc)

2I1(J̄1Rc)
− I1(J̄1Rc)

I0(J̄1Rc)
− 1

J̄1Rc

)
J̄0R cos2 θ]

=
I1(J̄1Rc)

2I0(J̄1Rc)

1

J1Rc

(I0(J̄1Rc) + I2(J̄1Rc)

2I1(J̄1Rc)
− I1(J̄1Rc)

I0(J̄1Rc)
− 1

J̄1Rc

)
J̄0R.

Below, we put Īn = In(J̄1Rc). Equation (100) becomes

R ' J0R
Ī1

J1RcĪ0
+ J1Rc

Ī1
2Ī0

1

J1Rc

( Ī0 + Ī2
2Ī1

− Ī1
Ī0

− 1

J̄1Rc

)
J̄0R

= J̄0R
Ī1

J̄1RcĪ0
+

Ī1
2Ī0

( Ī0 + Ī2
2Ī1

− Ī1
Ī0

− 1

J̄1Rc

)
J̄0R. (104)

Therefore, the following relation holds at the boundary:

1 = J̄0
Ī1

J̄1RcĪ0
+

Ī1
2Ī0

( Ī0 + Ī2
2Ī1

− Ī1
Ī0

− 1

J̄1Rc

)
J̄0. (105)

On the other hand, at the boundary, eq. (101) becomes

1 = J1〈cos2 θ〉0

= J1
1

π

∫ π

0
dθ

Ī1
Ī0

1

J1Rc
cos2 θ = J1

Ī1
Ī0

1

2J1Rc
=

Ī1
Ī0

1

2Rc
.

Therefore, we obtain

Rc =
Ī1
2Ī0

. (106)

This is nothing but the equation for the stable S solution. Thus, eq. (105) becomes

1 = J̄0
2

J̄1
+Rc

( Ī0 + Ī2
2Ī1

− Ī1
Ī0

− 1

J̄1Rc

)
J̄0

=
J̄0
J̄1

+Rc

( Ī0 + Ī2
2Ī1

− Ī1
Ī0

)
J̄0.

Therefore, the equation which determines the boundary between the S and U phases is given by

J̄0 = [
1

J̄1
+Rc

( Ī0 + Ī2
2Ī1

− Ī1
Ī0

)
]−1 = [

1

J̄1
+

( Ī0 + Ī2
2Ī1

− Ī1
Ī0

) Ī1
2Ī0

]−1. (107)

5.2 Boundary between the S and Pn phases

As studied in Ref. 7, when βJ1 is increased by fixing βJ0 to 4, a stable Pn solution and an

unstable Pn solution merge and only the unstable Pn solution remains. See Fig. 3(b). At the

parameter where the stable Pn solution disappears, Rc = 0 holds. The unstable Pn solution is
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solution 2 and it coincides with solution 1 when Rc = 0. Therefore, the boundary between the S

and Pn phases is where Rc becomes 0 for solution 2. Assuming Rc � 1 in solution 2, the Taylor

expansion of Ξ̂(θ) = βΞ̃ up to O(Rc) is

Ξ̂(θ) =
√

(J̄0R+ J̄1Rc cos θ)2 + (J̄1Rs sin θ)2

'
√

(J̄0R)2 + (J̄1Rs sin θ)2 + 2J̄0J̄1RRc cos θ

' Ξ̂0

(
1 +

J̄0J̄1RRc cos θ

Ξ̂2
0

)
, (108)

Ξ̂0(θ) =
√

(J̄0R)2 + (J̄1Rs sin θ)2. (109)

Therefore, I0 and I1 are expressed as

I0(Ξ̂(θ)) ' 1

2π

∫ 2π

0
dφeΞ̂0 cosφ

(
1 +

J̄0J̄1R cos θ

Ξ̂0(θ)
Rc cosφ

)
= I∗0 +

J̄0J̄1R cos θ

Ξ̂0(θ)
RcI

∗
1 , (110)

I1(Ξ̂(θ)) ' I∗1 +
J̄0J̄1R cos θ

Ξ̂0(θ)
Rc

I∗0 + I∗2
2

, (111)

I1(Ξ̂(θ))

I0(Ξ̂(θ))

1

Ξ̂(θ)
' I∗1

I∗0

1

Ξ̂0

×[1 +
(I∗0 + I∗2

2I∗1
− I∗1

I∗0
− 1

Ξ̂0

) 1

Ξ̂0

J̄0J̄1RRc cos θ]. (112)

Here, we put I∗n = In(Ξ̂0). Therefore, the SPE for Rc, eq. (94), is

Rc =
1

π

∫ π

0
dθ

I1(Ξ̂(θ))

I0(Ξ̂(θ))

1

Ξ̂(θ)
(J̄0R+ J̄1Rc cos θ) cos θ

' 1

π

∫ π

0
dθ

I∗1
I∗0

1

Ξ̂0

×[1 +
(I∗0 + I∗2

2I∗1
− I∗1

I∗0
− 1

Ξ̂0

) 1

Ξ̂0

J̄0J̄1RRc cos θ](J̄0R+ J̄1Rc cos θ) cos θ.

Since the integration of odd power of cos θ is 0, we obtain

Rc ' 1

π

∫ π

0
dθ

I∗1
I∗0

1

Ξ̂0

×J̄1Rc[1 +
(I∗0 + I∗2

2I∗1
− I∗1

I∗0
− 1

Ξ̂0

) 1

Ξ̂0

(J̄0R)2] cos2 θ. (113)

Therefore, the boundary between the S and Pn phases is determined by

1 =
1

π

∫ π

0
dθ

I∗1
I∗0

1

Ξ̂0

J̄1[1 +
(I∗0 + I∗2

2I∗1
− I∗1

I∗0
− 1

Ξ̂0

) 1

Ξ̂0

(J̄0R)2] cos2 θ. (114)

On the other hand, the SPEs for R, eq. (93), and Rs, eq. (95), at the boundary are

1 = J̄0
1

π

∫ π

0
dθ

I∗1
I∗0

1

Ξ̂0

, (115)

1 = J̄1
1

π

∫ π

0
dθ

I∗1
I∗0

1

Ξ̂0

sin2 θ. (116)
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These are the SPEs for solution 1 of the Pn phase.

5.3 Numerical results

We display the phase diagram in the scaled parameter space in Fig. 3(a). There are five curves

in the figure, and these curves represent theoretical results. Those are βJ0 = 2, eq. (18) for the

boundary between the P and U phases, βJ1 = 4, eq. (36) for that between the P and S phases,

J1 = 2J0, eq. (90) for that between the U and Pn phases, eq. (107) for that between the U and S

phases, and eq. (114) for that between the S and Pn phases. The theoretical and numerical results

agree well.

§6. Summary and Discussion

In this paper, we studied the XY model on a circle with the Mexican-hat type interaction. The

interaction is composed of two terms, one of which is the uniform interaction with the strength

J0, and the other is the sinusoidal interaction with respect to the location θ of oscillators with the

strength J1. If J1 = 0, it is the ferromagnetic XY model. The order parameters that characterize

solutions of SPEs are R and R1. The SPEs for the XY model were obtained analytically. There

are four phases. The paramagnetic phase with R = 0 and R1 = 0 is the disordered phase. In the

uniform phase with R > 0 and R1 = 0, the phases of the XY spins do not depend on the location

of spins. In the spinning phase with R = 0 and R1 > 0, the phases of the XY spins change by 2π

when the coordinate of spin θ changes by 2π. In the pendulum phase with R > 0 and R1 > 0, the

phases do not change by 2π but fluctuate when the coordinate of spins θ changes by 2π.

The SPEs and the differences between the phases of complex order parameters were derived

analytically. We proved that the Pn solution bifurcates from the U solution at J1 = 2J0 and found

that the coexisting stable nontrivial solutions are the U and S solutions, and the S and Pn solutions.

Finally, we derived the boundary between the S and U phases, and that between the S and Pn

phases.

In the present study, we considered the first two Fourier components as the interaction compo-

nents. How the existing phases and phase transitions depend on the types of the interaction is an

interesting question. The XY model in which the interaction is composed of the first and second

Fourier components is now under investigation, and different types of phases and phase transitions

are found. These results will be reported elsewhere.

In the context of the synchronization - desynchronization phase transition, the phase oscil-

lator network has been investigated extensively since Kuramoto introduced the globally coupled

model.2–4,8–12 In general, the phase oscillator model with uniform natural frequency coincides with

the classical XY model at zero temperature, if the interactions in both models are the same. We

are now studying the phase oscillator network model with the Mexican-hat type interaction and

clarifying the resemblance of both models. These results will be reported in the future.
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Appendix: Derivation of SPEs

A.1 Case of R̃ 6= 0

(1) Case of RcRs 6= 0

Solution 1. Case of Θ̃c = −π
2 and Θ̃s =

π
2 .

From eqs. (42) – (44), we obtain

R̃ cos θ = −Rc, R̃ sin θ = Rs, (A.1)

R̃ = R1 =
√
R2

c +R2
s, (A.2)

Ξ̃(θ) =
√

(J0R)2 + (J1R1 sin θ)2. (A.3)

Therefore, we obtain

f =
1

2
(J0R

2 + J1R
2
1)−

1

β

2

π

∫ π/2

0
dθ ln{2πI0(βΞ̃(θ))}. (A.4)

Since 〈cos θ〉 = 0, eq. (53) is automatically satisfied. The SPEs are

R = RJ0
2

π

∫ π/2

0
dθ

I1(βΞ̃)

I0(βΞ̃)

1

Ξ̃
, (A.5)

R1 = R1J1
2

π

∫ π/2

0
dθ

I1(βΞ̃)

I0(βΞ̃)

1

Ξ̃
sin2(θ). (A.6)

The solution for these equations agrees with numerical results. For the following cases of

(Θ̃c, Θ̃s),

(Θ̃c, Θ̃s) = (
π

2
,
π

2
), (

π

2
,−π

2
), (−π

2
,−π

2
), (A.7)

Ξ̃ is the same as eq. (A.3). Therefore, the SPEs for these cases are the same as (A.5) and

(A.6).

For the following cases of (Θ̃c, Θ̃s),

(Θ̃c, Θ̃s) = (0, 0), (π, π), (0, π), (π, 0), (A.8)

from eq. (44), R̃ = 0 follows, and these cases are excluded.

Solution 2. Case of (Θ̃c, Θ̃s) = (0, π2 )

From eq. (44), R̃ = Rs follows. From eq. (43), we obtain Rs cos θ = 0, Rs sin θ = Rs. That is,

θ = π
2 follows. Therefore, we obtain

R̃ = Rs, θ =
π

2
, (A.9)

Ξ̃(θ) =
√

(J0R+ J1Rc cos θ)2 + (J1Rs sin θ)2. (A.10)

Thus, eq. (53) is automatically satisfied.
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When R = 0, this solution gives the spinning solution of J0 = 0.

Solution 3 (= solution2). Case of (Θ̃c, Θ̃s) = (0,−π
2 )

From eq. (44), R̃ = Rs follows. From eq. (43), we obtain Rs cos θ = 0, Rs sin θ = −Rs. That

is, θ = −π
2 follows. Therefore, we obtain

R̃ = Rs, θ = −π

2
, (A.11)

Ξ̃(θ) =
√

(J0R− J1Rc cos θ)2 + (J1Rs sin θ)2. (A.12)

Thus, eq. (53) is automatically satisfied. If we put θ′ = π− θ, this case coincides with the case

of (Θ̃c, Θ̃s) = (0, π2 ).

Solution 4． Case of (Θ̃c, Θ̃s) = (π2 , 0)

From eq. (44), R̃ = Rc follows. From eq. (43), we obtain Rc cos θ = Rc, Rc sin θ = 0. That is,

θ = 0 follows. Therefore, we obtain

R̃ = Rc, θ = 0, (A.13)

Ξ̃(θ) =
√

(J0R− J1Rs cos θ)2 + (J1Rc sin θ)2. (A.14)

Thus, eq. (53) is automatically satisfied. If we put θ = π/2−θ′, we have Ξ̂(θ′) ≡ Ξ̃(π/2−θ′) =√
(J0R− J1Rs sin θ′)2 + (J1Rc cos θ′)2. Then, when R = 0, this gives the spinning solution of

J0 = 0.

Solution 5 (=solution 4). Case of (Θ̃c, Θ̃s) = (−π
2 , 0)

From eqs. (43) and (44), R̃ = −Rc and θ = π follow. Therefore, we have

R̃ = −Rc, θ = π, (A.15)

Ξ̃(θ) =
√

(J0R+ J1Rs cos θ)2 + (J1Rc sin θ)2. (A.16)

Thus, eq. (53) is automatically satisfied. Putting θ′ = π − θ, we note that this case coincides

with the case of (Θ̃c, Θ̃s) = (π2 , 0).

(2) Case of Rc = 0

From eq. (44), R̃ = |Rs sin Θ̃s| follows. Therefore, for Θ̃s = (0,±π
2 , π), R̃ becomes (0, Rs, 0),

respectively. Thus, we obtain Θ̃s = ±π
2 , and from eq. (43), Rs sin θ = Rs sin Θ̃s = ±Rs follows.

Thus, we obtain θ = ±π
2 . Since we have

Ξ̃(θ) =
√

(J0R)2 + (J1Rs sin θ)2, (A.17)

the present solution coincides with the solution obtained by putting Rc = 0 in solutions 2 and

3.

(3) Case of Rs = 0

From eq. (44), R̃ = |Rc sin Θ̃c| follows. Therefore, for Θ̃c = (0,±π
2 , π), R̃ becomes (0, Rc, 0),

respectively. Thus, we obtain Θ̃c = ±π
2 , and from eq. (43), Rc cos θ = Rc sin Θ̃c = ±Rc follows.
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Thus, we obtain θ = 0, π. Since we have

Ξ̃(θ) =
√
(J0R)2 + (J1Rc sin θ)2, (A.18)

the present solution coincides with the solution obtained by putting Rs = 0 in solutions 4 and

5.

Therefore, for R̃ 6= 0, solutions other than solution 1 are

(Θ̃c, Θ̃s) = (0,
π

2
), R̃ = Rs, θ =

π

2
, (A.19)

(Θ̃c, Θ̃s) = (0,−π

2
), R̃ = Rs, θ = −π

2
, (A.20)

Ξ̃(θ) =
√

(J0R− J1Rc cos θ)2 + (J1Rs sin θ)2 (A.21)

and the solution with Rc = 0 in this solution, and the solution

(Θ̃c, Θ̃s) = (
π

2
, 0), θ = 0 (A.22)

(Θ̃c, Θ̃s) = (−π

2
, 0), θ = π (A.23)

Ξ̃(θ) =
√

(J0R− J1Rs cos θ)2 + (J1Rc sin θ)2, (A.24)

and the solution with Rs = 0 in this solution.

A.2 Case of R̃ = 0

The conditions are

Rc sin Θ̃c = 0 and Rs sin Θ̃s = 0.

Therefore, from eq. (13), we obtain

Ξ(θ) = |J0R+ J1(Rc cos Θ̃c cos θ +Rs cos Θ̃s sin θ)|. (A.25)

From the conditions, we have

{Rc = 0, or Θ̃c = 0, or Θ̃c = π}

and

{Rs = 0, or Θ̃s = 0, or Θ̃s = π}.

Therefore, we obtain the following cases:

(1) Rc = 0, Rs = 0 → R1 = 0 → Kuramoto model

(2) Rc = 0, Θ̃s = 0,→ Ξ(θ) = |J0R+ J1R1 sin θ|, (R1 = Rs),

(3) Rc = 0, Θ̃s = π,→ Ξ(θ) = |J0R− J1R1 sin θ|, (R1 = Rs),

(4) Rs = 0, Θ̃c = 0,→,Ξ(θ) = |J0R+ J1R1 cos θ|, (R1 = Rc),

(5) Rs = 0, Θ̃c = π,→ Ξ(θ) = |J0R− J1R1 cos θ|, (R1 = Rc),
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(6) Θ̃c = 0, Θ̃s = 0,→ Ξ(θ) = |J0R+ J1(Rc cos θ +Rs sin θ)|,
(7) Θ̃c = 0, Θ̃s = π,→ Ξ(θ) = |J0R+ J1(Rc cos θ −Rs sin θ)|,
(8) Θ̃c = π, Θ̃s = 0,→ Ξ(θ) = |J0R− J1(Rc cos θ −Rs sin θ)|,
(9) Θ̃c = π, Θ̃s = π,→ Ξ(θ) = |J0R− J1(Rc cos θ +Rs sin θ)|.
f is given by

=
1

2
(J0R

2 + J1R
2
1)−

1

β

1

2π

∫ 2π

0
dθ ln{2πI0(βΞ(θ))}. (A.26)

By the coordinate transformations, such as θ = θ′ + π, θ =
π

2
− θ′, and θ′ = θ ± θ̂, and their

combinations, cases (3) to (9) become the same as case (2). Here, we define Rc = R1 cos θ̂ and

Rs = R1 sin θ̂ for cases (6) to (9). Furthermore, case 2 coincides with solutions 2 and 3 of R̃ 6= 0

with Rs = 0, and it also coincides with the solutions 4 and 5 of R̃ 6= 0 when Rc = 0. Therefore,

solutions for the case of R̃ = 0 are derived from the solutions for the case of R̃ 6= 0.
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