Analysis of XY Model with Mexican-Hat Interaction on a Circle
 - Derivation of Saddle Point Equations and Study of Bifurcation Structure -

Tatsuya Uezu ${ }^{*}$, Tomoyuki Kimoto 1, and Masato Okada 2,3
Graduate School of Sciences and Humanities, Nara Women's University, Nara 630, Japan
${ }^{1}$ Oita National College of Technology, Oita 870-0152, Japan
${ }^{2}$ Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan
${ }^{3}$ RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan

(Received May 11, 2012)

Abstract

In our previous study, we investigated a classical XY model on a circle by adopting the Mexican-hat type interaction, which is composed of uniform and location-dependent interactions. We solved the saddle point equations numerically and found three nontrivial solutions. In this study, we determined the phases of complex order parameters and derived the saddle point equations for stable and unstable nontrivial solutions and the formula of boundaries of bistable regions analytically. We performed Markov Chain Monte Carlo simulations and confirmed that the numerical and theoretical results agree well.

KEYWORDS: XY model, Mexican-hat interaction, saddle point equations, bistability

§1. Introduction

Over these past years, we have been studying the synchronization - desynchronization phase transition of oscillator networks. ${ }^{1}$ In particular, we have studied the phase oscillator network ${ }^{2-4}$ with the Mexican-hat type interaction on a circle. This type of interaction was introduced to model the feature extraction cells in neurosciences ${ }^{5,6}$ and to express effects of excitation of nearby neurons and inhibition of distant neurons.

In the course of the analysis of the phase oscillator network, it turned out that information on the phases of complex order parameters is necessary. Therefore, we studied the XY model on a circle with the same interaction as the phase oscillator network, because both models coincide with each other under some conditions.

In the XY model, we found three nontrivial solutions of the saddle point equations (SPEs), the uniform (U), spinning (S), and pendulum (Pn) solutions. ${ }^{7}$ We confirmed the agreement between the theoretical and numerical results, and drew phase diagrams by performing numerical simulations.

In this study, we theoretically determined the phases of complex order parameters that enabled us to derive the self-consistent equations (SCEs) of the amplitudes of complex order parameters in the phase oscillator network. We derived the SPEs of the amplitudes of complex order param-

[^0]eters for stable and unstable nontrivial solutions as well. Furthermore, we derived the formula of boundaries of bistable regions by identifying and using the unstable Pn solution. We performed Markov Chain Monte Carlo (MCMC) simulations and found that the numerical and theoretical results agree well.

The structure of this paper is as follows. In $\S 2$, we formulate the model. In $\S 3$ and $\S 4$, we analyze the model with only the location-dependent interaction, and the model with both the uniform and location-dependent interactions, respectively. We derive the formula of boundaries of bistable regions in $\S 5$. Summary and discussion are given in $\S 6$. In Appendix, we give the detailed derivation of the SPEs.

§2. Formulation

Let us consider the classical XY model. We assume that the magnitude of the XY spin $\boldsymbol{X}=(X, Y)$ is 1 . Let ϕ_{i} be the phase of the i-th $\operatorname{spin} \boldsymbol{X}_{i}=\left(X_{i}, Y_{i}\right)$,

$$
\begin{equation*}
X_{i}=\cos \phi_{i}, \quad Y_{i}=\sin \phi_{i} \tag{1}
\end{equation*}
$$

The Hamiltonian H and the interaction $J_{i j}$ between the i-th and j-th spins are given by

$$
\begin{align*}
H & =-\sum_{i<j} J_{i j} \cos \left(\phi_{i}-\phi_{j}\right) \tag{2}\\
J_{i j} & =\frac{J_{0}}{N}+\frac{J_{1}}{N} \cos \left(\theta_{i}-\theta_{j}\right), \quad \theta_{i}=i \frac{2 \pi}{N}, i=0, \cdots, N-1 \tag{3}
\end{align*}
$$

Here, θ_{i} is the coordinate of the i-th spin on the unit circle. The interaction $J_{i j}$ has the property of the Mexican-hat type interaction. Now, we introduce the following three complex order parameters:

$$
\begin{align*}
W & =R e^{i \Theta}=\frac{1}{N} \sum_{j} e^{i \phi_{j}} \tag{4}\\
W_{c} & =R_{c} e^{i \Theta_{c}}=\frac{1}{N} \sum_{j} \cos \theta_{j} e^{i \phi_{j}} \tag{5}\\
W_{s} & =R_{s} e^{i \Theta_{s}}=\frac{1}{N} \sum_{j} \sin \theta_{j} e^{i \phi_{j}} \tag{6}
\end{align*}
$$

By using R and $R_{1}=\sqrt{R_{c}^{2}+R_{s}^{2}}, H$ is rewritten as

$$
\begin{equation*}
H=-\frac{N}{2}\left(J_{0} R^{2}+J_{1} R_{1}^{2}\right)+\frac{1}{2}\left(J_{0}+J_{1}\right) \tag{7}
\end{equation*}
$$

We introduce different expressions of order parameters as

$$
\begin{aligned}
& R_{R}=R \cos \Theta=\frac{1}{N} \sum_{j} \cos \phi_{j}, R_{I}=R \sin \Theta=\frac{1}{N} \sum_{j} \sin \phi_{j} \\
& R_{c R}=R_{c} \cos \Theta_{c}=\frac{1}{N} \sum_{j} \cos \theta_{j} \cos \phi_{j}, R_{c I}=R_{c} \sin \Theta_{c}=\frac{1}{N} \sum_{j} \cos \theta_{j} \sin \phi_{j} \\
& R_{s R}=R_{s} \cos \Theta_{s}=\frac{1}{N} \sum_{j} \sin \theta_{j} \cos \phi_{j}, R_{s I}=R_{s} \sin \Theta_{s}=\frac{1}{N} \sum_{j} \sin \theta_{j} \sin \phi_{j}
\end{aligned}
$$

Introducing their conjugate variables and using the relations

$$
\begin{aligned}
& \int d R_{R} \delta\left(R_{R}-\frac{1}{N} \sum_{j} \cos \phi_{j}\right)=1 \\
& \delta\left(R_{R}-\frac{1}{N} \sum_{j} \cos \phi_{j}\right)=\frac{N}{2 \pi i} \int d \hat{R}_{R} e^{-N \hat{R}_{R}\left(R_{R}-\frac{1}{N} \sum_{j} \cos \phi_{j}\right)}
\end{aligned}
$$

the partition function Z is expressed as

$$
\begin{aligned}
Z= & \operatorname{Tr} \exp [-\beta H]=\operatorname{Tr} \exp \left[\beta \frac{N}{2}\left(J_{0} R^{2}+J_{1} R_{1}^{2}\right)-\frac{\beta}{2}\left(J_{0}+J_{1}\right)\right] \\
= & e^{-\frac{\beta}{2}\left(J_{0}+J_{1}\right)}\left(\frac{N}{2 \pi i}\right)^{6} \int d \boldsymbol{R} e^{N G} \\
G= & G_{0}+G_{1} \\
G_{0}= & \frac{\beta}{2}\left(J_{0} R^{2}+J_{1} R_{1}^{2}\right) \\
& -\left(\hat{R}_{R} R_{R}+\hat{R}_{I} R_{I}+\hat{R}_{c R} R_{c R}+\hat{R}_{c I} R_{c I}+\hat{R}_{s R} R_{s R}+\hat{R}_{s I} R_{s I}\right), \\
e^{N G_{1}}= & \exp \left[\sum_{j} \ln \int d \phi_{j} \exp \left\{A_{j} \cos \phi_{j}+B_{j} \cos \phi_{j}\right\}\right] \\
A_{j}= & \hat{R}_{R}+\hat{R}_{c R} \cos \theta_{j}+\hat{R}_{s R} \sin \theta_{j} \\
B_{j}= & \hat{R}_{I}+\hat{R}_{c I} \cos \theta_{j}+\hat{R}_{s I} \sin \theta_{j} \\
& \operatorname{Tr}=\int d \phi=d \phi_{1} d \phi_{2} \cdots d \phi_{N}, \\
& d \boldsymbol{R}=d \hat{R}_{R} d R_{R} d \hat{R}_{I} d R_{I} d \hat{R}_{c R} d R_{c R} d \hat{R}_{c I} d R_{c I} d \hat{R}_{s R} d R_{s R} d \hat{R}_{s I} d R_{s I} .
\end{aligned}
$$

Here, we put $\beta=\frac{1}{T}$, and T is 'temperature'. Under optimal conditions of G with respect to R_{R}, R_{I}, and so forth, we obtain

$$
\begin{align*}
& \hat{R}_{R}=\beta J_{0} R_{R}, \hat{R}_{I}=\beta J_{0} R_{I} \\
& \hat{R}_{c R}=J_{1} R_{c R}, \quad \hat{R}_{c I}=J_{1} R_{c I}, \hat{R}_{s R}=J_{1} R_{s R}, \hat{R}_{s I}=J_{1} R_{s I} \tag{8}
\end{align*}
$$

Thus, G_{0} is expressed as

$$
\begin{equation*}
G_{0}=-\frac{\beta}{2}\left(J_{0} R^{2}+J_{1} R_{1}^{2}\right) \tag{9}
\end{equation*}
$$

By introducing C_{j} and ϕ_{j}^{0} as

$$
\begin{aligned}
& A_{j} \cos \phi_{j}+B_{j} \sin \phi_{j}=C_{j} \cos \left(\phi_{j}-\phi_{j}^{0}\right) \\
& C_{j}=\sqrt{A_{j}^{2}+B_{j}^{2}}, C_{j} \cos \phi_{j}^{0}=A_{j}, C_{j} \sin \phi_{j}^{0}=B_{j}
\end{aligned}
$$

G_{1} is now expressed by

$$
\begin{align*}
G_{1} & =\frac{1}{N} \sum_{j} \ln \int d \phi_{j} e^{A_{j} \cos \phi_{j}+B_{j} \sin \phi_{j}}=\frac{1}{N} \sum_{j} \ln \int d \phi_{j} e^{C_{j} \cos \left(\phi_{j}-\phi_{j}^{0}\right)} \\
& =\frac{1}{N} \sum_{j} \ln \left\{2 \pi I_{0}(\beta \Xi(\theta))\right\}=\frac{1}{2 \pi} \int_{0}^{2 \pi} d \theta \ln \left\{2 \pi I_{0}(\beta \Xi(\theta))\right\} \tag{10}
\end{align*}
$$

where $I_{n}(z)$ and $\Xi\left(\theta_{j}\right)$ are defined by

$$
\begin{align*}
I_{n}(z)= & \frac{1}{2 \pi} \int_{0}^{2 \pi} d \phi \cos n \phi e^{z \cos \phi} \tag{11}\\
\Xi\left(\theta_{j}\right)= & \sqrt{\left(\frac{A_{j}}{\beta}\right)^{2}+\left(\frac{B_{j}}{\beta}\right)^{2}} \\
= & {\left[\left\{J_{0} R_{R}+J_{1}\left(R_{c R} \cos \theta_{j}+R_{s R} \sin \theta_{j}\right)\right\}^{2}\right.} \\
& \left.+\left\{J_{0} R_{I}+J_{1}\left(R_{c I} \cos \theta_{j}+R_{s I} \sin \theta_{j}\right)\right\}^{2}\right]^{1 / 2} \tag{12}
\end{align*}
$$

By introducing $\tilde{\Theta}_{c} \equiv \Theta_{c}-\Theta$ and $\tilde{\Theta}_{s} \equiv \Theta_{s}-\Theta, \Xi(\theta)$ is further rewritten as

$$
\begin{align*}
& \Xi(\theta)^{2}= \\
& \begin{aligned}
\left(J_{0} R\right)^{2}+ & J_{1}^{2}\left\{\left(R_{c} \cos \theta\right)^{2}+\left(R_{s} \sin \theta\right)^{2}+2 R_{c} R_{s} \cos \left(\tilde{\Theta}_{c}-\tilde{\Theta}_{s}\right) \sin \theta \cos \theta\right\} \\
& +2 J_{0} J_{1} R\left\{R_{c} \cos \tilde{\Theta}_{c} \cos \theta+R_{s} \cos \tilde{\Theta}_{s} \sin \theta\right\}
\end{aligned}
\end{align*}
$$

The free energy f per spin is expressed by

$$
\begin{equation*}
f=-\frac{1}{\beta N} \ln Z=-\frac{1}{\beta N} G \tag{14}
\end{equation*}
$$

Therefore, G and f depend only on $R, R_{c}, R_{s}, \tilde{\Theta}_{c}$, and $\tilde{\Theta}_{s}$.
2.1 $J_{0}>0, J_{1}=0$, the case of ferromagnetic interactions

In this case, $\Xi(\theta)$ and f are expressed by

$$
\begin{align*}
\Xi(\theta) & =J_{0} R \tag{15}\\
f & =\frac{1}{2} J_{0} R^{2}-\frac{1}{\beta} \ln \left\{2 \pi I_{0}\left(\beta J_{0} R\right)\right) \tag{16}
\end{align*}
$$

and SPE becomes

$$
\begin{equation*}
R=\frac{I_{1}\left(\beta J_{0} R\right)}{I_{0}\left(\beta J_{0} R\right)} \tag{17}
\end{equation*}
$$

It turns out that this is the stable U solution in which $R>0$ and $R_{1}=0$. The critical temperature is given by

$$
\begin{equation*}
T_{0, c}=\frac{J_{0}}{2} \tag{18}
\end{equation*}
$$

§3. Case of $J_{0}=0$ and $J_{1}>0$
$\Xi(\theta)$ and f are given by

$$
\begin{align*}
\Xi(\theta) & =J_{1} \sqrt{\left(R_{c} \cos \theta\right)^{2}+\left(R_{s} \sin \theta\right)^{2}+2 R_{c} R_{s} \cos \hat{\Theta} \sin \theta \cos \theta} \tag{19}\\
f & =\frac{1}{2} J_{1} R_{1}^{2}-\frac{1}{\beta} \frac{1}{2 \pi} \int_{0}^{2 \pi} d \theta \ln \left\{2 \pi I_{0}(\beta \Xi(\theta))\right\} \tag{20}
\end{align*}
$$

where $\hat{\Theta}=\tilde{\Theta}_{c}-\tilde{\Theta}_{s} . f$ depends only on R_{c}, R_{s}, and $\hat{\Theta}$. From the optimal condition of f with respect to $\hat{\Theta}$, we obtain

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{2 \pi} d \theta \frac{I_{1}(\beta \Xi)}{I_{0}(\beta \Xi)} \frac{1}{\Xi} \sin \theta \cos \theta \sin \hat{\Theta}=0 . \tag{21}
\end{equation*}
$$

The following two cases are deduced under this condition:

$$
\begin{equation*}
\text { Case } 1 \quad \sin \hat{\Theta}=0, \tag{22}
\end{equation*}
$$

Case $2 \frac{1}{2 \pi} \int_{0}^{2 \pi} d \theta \frac{I_{1}(\beta \Xi)}{I_{0}(\beta \Xi)} \frac{1}{\Xi} \sin \theta \cos \theta=0$.
In the following, we study these cases separately.

3.1 Case 1

From the condition $\sin \hat{\Theta}=0, \hat{\Theta}=0$ and π follow in $\bmod 2 \pi$. Thus, we have the equation

$$
\begin{equation*}
R_{1}=\frac{2}{\pi} \int_{0}^{\pi / 2} d \theta \frac{I_{1}\left(\beta J_{1} R_{1} \cos \theta\right)}{I_{0}\left(\beta J_{1} R_{1} \cos \theta\right)} \cos \theta \tag{24}
\end{equation*}
$$

It turns out that this is the equation for an unstable solution, because simulation results do not agree with the solution of this equation.

3.2 Case 2

We change the integration range from $[0,2 \pi]$ to $[-\pi, \pi]$ for convenience in eq. (23). The necessary and sufficient condition for eq. (23) is that the Fourier series expansion of the integrand does not contain the term $\sin (2 \theta)$. That is, the condition is

$$
\begin{equation*}
R_{c} R_{s} \cos \hat{\Theta}=0 . \tag{25}
\end{equation*}
$$

This implies

$$
\begin{equation*}
\hat{\Theta}= \pm \frac{\pi}{2} \text { or } R_{c}=0, \text { or } R_{s}=0 . \tag{26}
\end{equation*}
$$

The SPEs become

$$
\begin{align*}
& \Xi(\theta)=J_{1} \hat{\Xi}(\theta), \tag{27}\\
& \hat{\Xi}(\theta)=\sqrt{R_{c}^{2} \cos ^{2} \theta+R_{s}^{2} \sin ^{2} \theta,} \tag{28}\\
& R_{c}= R_{c} \frac{1}{\pi} \int_{0}^{\pi} d \theta \frac{I_{1}\left(\beta J_{1} \hat{\Xi}\right)}{I_{0}\left(\beta J_{1} \hat{\bar{\Xi}}\right)} \frac{1}{\hat{\Xi}} \cos ^{2}(\theta), \tag{29}\\
& R_{s}= R_{s} \frac{1}{\pi} \int_{0}^{\pi} d \theta \frac{I_{1}\left(\beta J_{1} \hat{\Xi}\right)}{I_{0}\left(\beta J_{1} \hat{\Xi}\right)} \frac{1}{\hat{\Xi}} \sin ^{2}(\theta) . \tag{30}
\end{align*}
$$

Let us consider three cases separately.
Case of $\hat{\Theta}= \pm \frac{\pi}{2}$
Let us define θ_{0} as

$$
\begin{equation*}
R_{1} \cos \theta_{0}=R_{c}, \quad R_{1} \sin \theta_{0}=R_{s}, \quad 0 \leq \theta_{0} \leq \frac{\pi}{2} . \tag{31}
\end{equation*}
$$

Then, defining $\bar{\Xi}(\theta) \equiv \sqrt{1+\cos \left(2 \theta_{0}\right) \cos (2 \theta)}$, we have

$$
\begin{equation*}
\hat{\Xi}(\theta)=\frac{R_{1}}{\sqrt{2}} \sqrt{1+\cos \left(2 \theta_{0}\right) \cos (2 \theta)}=\frac{R_{1}}{\sqrt{2}} \bar{\Xi}(\theta) . \tag{32}
\end{equation*}
$$

Under the optimal condition of f with respect to θ_{0}, we obtain

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{2 \pi} d \theta \beta J_{1} R_{1} \frac{1}{\sqrt{2} \bar{\Xi}}\left(-\sin 2 \theta_{0} \cos 2 \theta\right) \frac{I_{1}\left(\beta J_{1} R_{1} \bar{\Xi} / \sqrt{2}\right)}{I_{0}\left(\beta J_{1} R_{1} \bar{\Xi} / \sqrt{2}\right)}=0 . \tag{33}
\end{equation*}
$$

Thus, the necessary and sufficient condition for this is $\sin 2 \theta_{0}=0$ or the coefficient of $\cos 2 \theta$ in $\overline{\bar{\Xi}}$ is 0 . Therefore,

$$
\begin{equation*}
\sin 2 \theta_{0}=0 \text { or } \cos 2 \theta_{0}=0 . \tag{34}
\end{equation*}
$$

When $\sin 2 \theta_{0}=0, \theta_{0}=0$ or $\frac{\pi}{2}$ follows. Then, $R_{c}=R_{1}, R_{s}=0$, or $R_{s}=R_{1}, R_{c}=0$ follows. When $\cos 2 \theta_{0}=0, \theta_{0}=\frac{\pi}{4}$ follows, and we obtain $R_{c}=R_{s}=\frac{1}{\sqrt{2}} R_{1}$.

Case of $R_{c}=0$, or $R_{s}=0$
This case already appears in the previous case.

Therefore, the possible solutions for case 2 are ($R_{c}=R_{1}, R_{s}=0$) or ($R_{s}=R_{1}, R_{c}=0$) or ($R_{c}=R_{s}=\frac{1}{\sqrt{2}} R_{1}$).

For the case of ($R_{c}=R_{1}, R_{s}=0$) or ($R_{s}=R_{1}, R_{c}=0$), the SPE turns out to be the same as in case 1 , eq. (24).

For the last case, $R_{c}=R_{s}=\frac{1}{\sqrt{2}} R_{1}$, the SPE is

$$
\begin{equation*}
R_{c}=\frac{1}{2} \frac{I_{1}\left(\beta J_{1} R_{c}\right)}{I_{0}\left(\beta J_{1} R_{c}\right)} \tag{35}
\end{equation*}
$$

The critical temperature is given by

$$
\begin{equation*}
T_{1, c}=\frac{J_{1}}{4} \tag{36}
\end{equation*}
$$

Numerical results. We performed MCMC simulations. In Fig. 1, we display the theoretical and simulation results for $J_{0}=0$ and $J_{1}=1$. The agreement between the theoretical result (eq. (35)) and simulation result is good. That is, eq. (35) is the SPE of the stable S solution in which $R=0$ and $R_{1}>0$.

Fig. 1. Temperature dependences of order parameters. $N=10000$. Curves: theory, eq. (35). Symbols: simulation. (a) Solid curve and $+: R$. Dashed curve and $\times: R_{1}$. (b) Solid curve denotes R_{c} and $R_{s} .+: R_{c}, \times: R_{s}$. Vertical lines are error bars.
$\S 4 . \quad$ Case of $J_{0} J_{1} \neq 0$
The optimal conditions of f with respect to $\tilde{\Theta}_{c}$ and $\tilde{\Theta}_{s}$ are given by

$$
\begin{align*}
& \frac{\partial f}{\partial \tilde{\Theta}_{c}}=0: \tag{37}\\
& \frac{1}{2 \pi} \int_{0}^{2 \pi} d \theta \frac{I_{1}(\beta \Xi)}{I_{0}(\beta \Xi)} \frac{1}{\Xi}\left[-J_{1}^{2} R_{c} R_{s} \sin \left(\tilde{\Theta}_{c}-\tilde{\Theta}_{s}\right) \sin \theta \cos \theta\right. \\
& \left.-J_{0} J_{1} R R_{c} \sin \tilde{\Theta}_{c} \cos \theta\right]=0 \tag{38}\\
& \frac{\partial f}{\partial \tilde{\Theta}_{s}}=0: \tag{39}\\
& \frac{1}{2 \pi} \int_{0}^{2 \pi} d \theta \frac{I_{1}(\beta \Xi)}{I_{0}(\beta \Xi)} \frac{1}{\Xi}\left[J_{1}^{2} R_{c} R_{s} \sin \left(\tilde{\Theta}_{c}-\tilde{\Theta}_{s}\right) \sin \theta \cos \theta\right. \\
& \left.-J_{0} J_{1} R R_{s} \sin \tilde{\Theta}_{s} \sin \theta\right]=0 . \tag{40}
\end{align*}
$$

By adding eqs. (38) and (40), we obtain

$$
\begin{equation*}
R \int_{0}^{2 \pi} d \theta \frac{I_{1}(\beta \Xi)}{I_{0}(\beta \Xi)} \frac{1}{\Xi}\left(R_{c} \sin \tilde{\Theta}_{c} \cos \theta+R_{s} \sin \tilde{\Theta}_{s} \sin \theta\right)=0 \tag{41}
\end{equation*}
$$

Defining \tilde{R} and $\bar{\theta}$ as

$$
\begin{align*}
& R_{c} \sin \tilde{\Theta}_{c} \cos \theta+R_{s} \sin \tilde{\Theta}_{s} \sin \theta=\tilde{R} \cos (\theta-\bar{\theta}) \tag{42}\\
& \tilde{R} \cos \bar{\theta}=R_{c} \sin \tilde{\Theta}_{c}, \tilde{R} \sin \bar{\theta}=R_{s} \sin \tilde{\Theta}_{s} \tag{43}\\
& \tilde{R}=\sqrt{\left(R_{c} \sin \tilde{\Theta}_{c}\right)^{2}+\left(R_{s} \sin \tilde{\Theta}_{s}\right)^{2}} \tag{44}
\end{align*}
$$

we obtain

$$
\begin{equation*}
\tilde{R} \int_{0}^{2 \pi} d \theta \frac{I_{1}(\beta \Xi)}{I_{0}(\beta \Xi)} \frac{1}{\Xi} \cos (\theta-\bar{\theta})=0 \tag{45}
\end{equation*}
$$

We define $\theta^{\prime}=\frac{\pi}{2}-(\theta-\bar{\theta})$ and $\tilde{\Xi}\left(\theta^{\prime}\right)=\Xi\left(\bar{\theta}+\frac{\pi}{2}-\theta^{\prime}\right)$. Thus, by changing the integral range from $[0,2 \pi]$ to $[-\pi, \pi]$, eq. (45) reduces to

$$
\begin{equation*}
\tilde{R} \int_{-\pi}^{\pi} d \theta \frac{I_{1}(\beta \tilde{\Xi}(\theta))}{I_{0}(\beta \tilde{\Xi}(\theta))} \frac{1}{\tilde{\Xi}(\theta)} \sin \theta=0 . \tag{46}
\end{equation*}
$$

Below, firstly, we consider the case of $\tilde{R} \neq 0$ and then the case of $\tilde{R}=0$.

4.1 Solutions for $\tilde{R} \neq 0$

The necessary and sufficient condition for eq. (46) is that $\tilde{\Xi}(\theta)$ does not have the term $\sin \theta$. Since $\tilde{\Xi}(\theta)^{2}$ is rewritten as

$$
\begin{gather*}
\tilde{\Xi}(\theta)^{2}= \\
{\left[J_{0} R+\frac{J_{1}}{\tilde{R}}\left\{\left(R_{c} \cos \tilde{\Theta}_{c} \sin \tilde{\Theta}_{c}+R_{s} \cos \tilde{\Theta}_{s} \sin \tilde{\Theta}_{s}\right) \sin \theta-R_{c} R_{s} \sin \left(\tilde{\Theta}_{c}-\tilde{\Theta}_{s}\right) \cos \theta\right\}\right]^{2}} \\
+J_{1}^{2} \tilde{R}^{2} \sin ^{2} \theta \tag{47}
\end{gather*}
$$

the condition is

$$
\begin{equation*}
R_{c} \sin 2 \tilde{\Theta}_{c}+R_{s} \sin 2 \tilde{\Theta}_{s}=0 \tag{48}
\end{equation*}
$$

Thus, the necessary and sufficient condition for eq. (48) is as follows:
(1) Case of $R_{c} R_{s} \neq 0$.

$$
\sin 2 \tilde{\Theta}_{c}=0 \text { and } \sin 2 \tilde{\Theta}_{s}=0
$$

That is,

$$
\left\{\tilde{\Theta}_{c}=\left(0, \pm \frac{\pi}{2}, \pi\right)(\bmod 2 \pi)\right\} \text { and }\left\{\tilde{\Theta}_{s}=\left(0, \pm \frac{\pi}{2}, \pi\right)(\bmod 2 \pi)\right\}
$$

Hereafter, we omit ' $\bmod 2 \pi$ ' for simplicity.
(2) Case of $R_{c}=0$.

$$
R_{s} \neq 0 \text { and }\left\{\tilde{\Theta}_{s}=\left(0, \pm \frac{\pi}{2}, \pi\right)\right\}
$$

(3) Case of $R_{s}=0$.

$$
R_{c} \neq 0 \text { and }\left\{\tilde{\Theta}_{c}=\left(0, \pm \frac{\pi}{2}, \pi\right)\right\}
$$

Now, let us find the solution in each case. To simplify the descriptions, we introduce the following notations:

$$
\begin{align*}
\langle g(\theta)\rangle & =\frac{1}{2 \pi} \int_{0}^{2 \pi} d \theta \frac{I_{1}(\beta \tilde{\Xi}(\theta))}{I_{0}(\beta \tilde{\Xi}(\theta))} \frac{1}{\tilde{\Xi}(\theta)} g(\theta) \tag{49}\\
\tilde{\Xi}(\theta) & =\Xi\left(\bar{\theta}+\frac{\pi}{2}-\theta\right) \\
& =\sqrt{\left(J_{0} R-\frac{J_{1}}{\tilde{R}} R_{c} R_{s} \sin \left(\tilde{\Theta}_{c}-\tilde{\Theta}_{s}\right) \cos \theta\right)^{2}+J_{1}^{2} \tilde{R}^{2} \sin ^{2} \theta} \tag{50}
\end{align*}
$$

Thus, eqs. (38) and (40) become

$$
\begin{align*}
& \left\langle-J_{1}^{2} R_{c} R_{s} \sin \left(\tilde{\Theta}_{c}-\tilde{\Theta}_{s}\right) \sin 2(\theta-\bar{\theta})-2 J_{0} J_{1} R R_{c} \sin \tilde{\Theta}_{c} \sin (\theta-\bar{\theta})\right\rangle=0 \tag{51}\\
& \left\langle J_{1}^{2} R_{c} R_{s} \sin \left(\tilde{\Theta}_{c}-\tilde{\Theta}_{s}\right) \sin (2 \theta-\bar{\theta})-2 J_{0} J_{1} R R_{s} \sin \tilde{\Theta}_{s} \cos (\theta-\bar{\theta})\right\rangle=0 \tag{52}
\end{align*}
$$

These equations (51) and (52) reduce to the same equation as

$$
\begin{align*}
& J_{1}^{2} R_{c} R_{s} \sin \left(\tilde{\Theta}_{c}-\tilde{\Theta}_{s}\right) \sin (2 \bar{\theta})\langle\cos (2 \theta)\rangle \\
&+\frac{2}{\tilde{R}} J_{0} J_{1} R R_{c} \sin \tilde{\Theta}_{c} R_{s} \sin \tilde{\Theta}_{s}\langle\cos \theta\rangle=0 \tag{53}
\end{align*}
$$

Here, we summarize the results of analysis of eq. (53). See Appendix A. 1 for the derivation.
Solution 1. Case of $\left(\tilde{\Theta}_{c}, \tilde{\Theta}_{s}\right)=\left(\pm \frac{\pi}{2}, \pm \frac{\pi}{2}\right)$

$$
\begin{align*}
\Xi(\theta) & =\sqrt{\left(J_{0} R\right)^{2}+\left(J_{1} R_{1} \sin \theta\right)^{2}} \tag{54}\\
f & =\frac{1}{2}\left(J_{0} R^{2}+J_{1} R_{1}^{2}\right)-\frac{1}{\beta} \frac{2}{\pi} \int_{0}^{\pi / 2} d \theta \ln \left\{2 \pi I_{0}(\beta \tilde{\Xi}(\theta))\right\} \tag{55}\\
R & =R J_{0} \frac{2}{\pi} \int_{0}^{\pi / 2} d \theta \frac{I_{1}(\beta \tilde{\Xi})}{I_{0}(\beta \tilde{\Xi})} \frac{1}{\tilde{\Xi}} \tag{56}\\
R_{1} & =R_{1} J_{1} \frac{2}{\pi} \int_{0}^{\pi / 2} d \theta \frac{I_{1}(\beta \tilde{\Xi})}{I_{0}(\beta \tilde{\Xi})} \frac{1}{\tilde{\Xi}} \sin ^{2}(\theta) \tag{57}
\end{align*}
$$

From numerical results, this solution turns out to be the stable Pn solution.
Solution 2. Case of $\left(\tilde{\Theta}_{c}, \tilde{\Theta}_{s}\right)=\left(0, \frac{\pi}{2}\right)$ and solution 3. Case of $\left(\tilde{\Theta}_{c}, \tilde{\Theta}_{s}\right)=\left(0,-\frac{\pi}{2}\right)$

$$
\begin{equation*}
\tilde{\Xi}(\theta)=\sqrt{\left(J_{0} R+J_{1} R_{c} \cos \theta\right)^{2}+\left(J_{1} R_{s} \sin \theta\right)^{2}} . \tag{58}
\end{equation*}
$$

When $R=0$, this solution gives the spinning solution of $J_{0}=0$.
Solution 4 . Case of $\left(\tilde{\Theta}_{c}, \tilde{\Theta}_{s}\right)=\left(\frac{\pi}{2}, 0\right)$ and solution 5 . Case of $\left(\tilde{\Theta}_{c}, \tilde{\Theta}_{s}\right)=\left(-\frac{\pi}{2}, 0\right)$

$$
\begin{align*}
& \tilde{R}=R_{c}, \bar{\theta}=0 \tag{59}\\
& \tilde{\Xi}(\theta)= \sqrt{\left(J_{0} R-J_{1} R_{s} \cos \theta\right)^{2}+\left(J_{1} R_{c} \sin \theta\right)^{2}} \tag{60}
\end{align*}
$$

If we put $\theta=\pi / 2-\theta^{\prime}$, we have $\hat{\Xi}\left(\theta^{\prime}\right) \equiv \tilde{\Xi}\left(\pi / 2-\theta^{\prime}\right)=\sqrt{\left(J_{0} R-J_{1} R_{s} \sin \theta^{\prime}\right)^{2}+\left(J_{1} R_{c} \cos \theta^{\prime}\right)^{2}}$. Then, when $R=0$, this gives the spinning solution of $J_{0}=0$.

These solutions except for solution 1 are unstable, which we will investigate later.
The solutions for the case of $\tilde{R}=0$ are derived from the solutions for the case of $\tilde{R} \neq 0$. See Appendix A.2.

4.2 Analysis of SPEs (56) and (57), stable Pn solution

In this section, we analyze solution 1, which is the stable Pn solution.

4.2.1 Phase transition points

SPEs are

$$
\begin{align*}
R & =R J_{0} \frac{2}{\pi} \int_{0}^{\pi / 2} d \theta \frac{I_{1}(\beta \tilde{\Xi})}{I_{0}(\beta \tilde{\Xi})} \frac{1}{\tilde{\Xi}} \tag{61}\\
R_{1} & =R_{1} J_{1} \frac{2}{\pi} \int_{0}^{\pi / 2} d \theta \frac{I_{1}(\beta \tilde{\Xi})}{I_{0}(\beta \tilde{\Xi})} \frac{1}{\tilde{\Xi}} \sin ^{2} \theta \tag{62}\\
\tilde{\Xi} & =\sqrt{\left(J_{0} R\right)^{2}+\left(J_{1} R_{1} \sin \theta\right)^{2}} \tag{63}
\end{align*}
$$

When $R \ll 1$ and $R_{1} \ll 1, \tilde{\Xi} \ll 1$ follows, and then we have

$$
\begin{align*}
I_{0}(\beta \tilde{\Xi}) & \simeq \frac{1}{2 \pi} \int_{0}^{2 \pi} d \phi\left(1+\beta \tilde{\Xi} \cos \phi+\frac{1}{2}(\beta \tilde{\Xi})^{2}(\cos \phi)^{2}\right)=1+\frac{1}{4}(\beta \tilde{\Xi})^{2} \tag{64}\\
I_{1}(\beta \tilde{\Xi}) & \simeq \frac{1}{2 \pi} \int_{0}^{2 \pi} d \phi \cos \phi\left(1+\beta \tilde{\Xi} \cos \phi+\frac{1}{2}(\beta \tilde{\Xi})^{2}(\cos \phi)^{2}\right)=\frac{1}{2} \beta \tilde{\Xi} \tag{65}\\
\frac{I_{1}}{I_{0}} & \simeq \frac{1}{2} \beta \tilde{\Xi} \tag{66}
\end{align*}
$$

Thus, SPEs become

$$
\begin{align*}
R & \simeq R J_{0} \frac{2}{\pi} \int_{0}^{\pi / 2} d \theta \frac{1}{2} \beta=R J_{0} \frac{1}{2} \beta \tag{67}\\
R_{1} & \simeq R_{1} J_{1} \frac{2}{\pi} \int_{0}^{\pi / 2} d \theta \frac{1}{2} \beta \sin ^{2}(\theta)=R_{1} J_{1} \frac{1}{4} \beta \tag{68}
\end{align*}
$$

Therefore, we derive

$$
\begin{align*}
T_{0, c} & =\frac{J_{0}}{2} \tag{69}\\
T_{1, c} & =\frac{J_{1}}{4} \tag{70}
\end{align*}
$$

The former is the critical temperature for the U solution and the latter is that for the S solution.

4.2.2 SPEs for $T \rightarrow 0$

When $T \ll 1 \quad(\beta \gg 1)$, we have

$$
\begin{align*}
& I_{0}(\beta \tilde{\Xi})=\frac{1}{2 \pi} \int_{-\pi}^{\pi} d \phi e^{\beta \tilde{\Xi} \cos \phi} \simeq \frac{1}{2 \pi} \int_{-\infty}^{\infty} d \phi e^{\beta \tilde{\Xi}\left(1-\frac{1}{2} \phi^{2}\right)}=\frac{1}{2 \pi} \sqrt{\frac{2 \pi}{\beta \tilde{\Xi}}} e^{\beta \tilde{\Xi}} \tag{71}\\
& I_{1}(\beta \tilde{\Xi})=\frac{1}{2 \pi} \int_{-\pi}^{\pi} d \phi \cos \phi e^{\beta \tilde{\Xi} \cos \phi} \simeq \frac{1}{2 \pi} \int_{-\infty}^{\infty} d \phi e^{\beta \tilde{\Xi}\left(1-\frac{1}{2} \phi^{2}\right)} \simeq I_{0}(\beta \tilde{\Xi}) \tag{72}
\end{align*}
$$

Therefore, $\frac{I_{1}(\beta \tilde{\Xi})}{I_{0}(\beta \tilde{\Xi})} \simeq 1$ follows. Thus, the SPEs are

$$
\begin{align*}
R & \simeq R J_{0} \frac{2}{\pi} \int_{0}^{\pi / 2} d \theta \frac{1}{\tilde{\Xi}} \tag{73}\\
R_{1} & \simeq R_{1} J_{1} \frac{2}{\pi} \int_{0}^{\pi / 2} d \theta \frac{1}{\tilde{\Xi}} \sin ^{2} \theta \tag{74}
\end{align*}
$$

Let us define

$$
\begin{align*}
k & \equiv \frac{J_{1} R_{1}}{J_{0} R}=J \frac{R_{1}}{R} \tag{75}\\
J & \equiv \frac{J_{1}}{J_{0}} \tag{76}
\end{align*}
$$

Then, $\tilde{\Xi}=J_{0} R \sqrt{1+k^{2} \sin ^{2} \theta}$ follows. Thus, we have

$$
\begin{align*}
R & \simeq \frac{2}{\pi} \int_{0}^{\pi / 2} d \theta \frac{1}{\sqrt{1+k^{2} \sin ^{2} \theta}} \tag{77}\\
R_{1} & \simeq k \frac{2}{\pi} \int_{0}^{\pi / 2} d \theta \frac{1}{\sqrt{1+k^{2} \sin ^{2} \theta}} \sin ^{2} \theta \tag{78}
\end{align*}
$$

4.2.3 Appearance of Pn solution when $T \rightarrow 0$

Let us assume $0<k \ll 1$. Then, we have

$$
\begin{align*}
R & \simeq \frac{2}{\pi} \int_{0}^{\pi / 2} d \theta \frac{1}{\sqrt{1+k^{2} \sin ^{2} \theta}} \simeq \frac{2}{\pi} \int_{0}^{\pi / 2} d \theta\left(1-\frac{k^{2}}{2} \sin ^{2} \theta\right)=1-\frac{k^{2}}{4} \tag{79}\\
R_{1} & \simeq k \frac{2}{\pi} \int_{0}^{\pi / 2} d \theta\left(1-\frac{k^{2}}{2} \sin ^{2} \theta\right) \sin ^{2} \theta=k\left(\frac{1}{2}-\frac{3 k^{2}}{16}\right) . \tag{80}
\end{align*}
$$

By using $R_{1}=k R / J$, we obtain

$$
\begin{align*}
R & =\frac{J}{3 J-4}, \tag{81}\\
R_{1} & =\frac{k R}{J}=\frac{2 \sqrt{2} \sqrt{J-2}}{(3 J-4)^{3 / 2}}, \tag{82}\\
k^{2} & =\frac{8(J-2)}{3 J-4} . \tag{83}
\end{align*}
$$

Therefore, the Pn solution emerges for $J>2$, that is, for $J_{1}>2 J_{0}$. From this analysis, it turns out that the Pn solution bifurcates from the U solution.

4.2.4 Appearance of Pn solution at finite temperatures

Let us assume $R>0$ and $R_{1} \ll 1$. Then, $k \ll 1$ follows. Since $\tilde{\Xi}$ is expressed as

$$
\begin{equation*}
\tilde{\Xi}=J_{0} R \sqrt{1+k^{2} \sin ^{2} \theta} \simeq J_{0} R\left(1+\frac{1}{2} k^{2} \sin ^{2} \theta\right) \tag{84}
\end{equation*}
$$

we have

$$
\begin{align*}
I_{0}(\beta \tilde{\Xi}) & =\frac{1}{2 \pi} \int_{0}^{2 \pi} d \phi e^{\beta \tilde{\Xi} \cos \phi} \simeq \frac{1}{2 \pi} \int_{0}^{2 \pi} d \phi e^{\beta J_{0} R \cos \phi} e^{\beta J_{0} R \frac{1}{2} k^{2} \sin ^{2} \theta \cos \phi} \\
& \simeq \frac{1}{2 \pi} \int_{0}^{2 \pi} d \phi e^{\beta J_{0} R \cos \phi}\left(1+\beta J_{0} R \frac{1}{2} k^{2} \sin ^{2} \theta \cos \phi\right) \\
& =I_{0}\left(\beta J_{0} R\right)+\beta J_{0} R \frac{1}{2} k^{2} \sin ^{2} \theta I_{1}\left(\beta J_{0} R\right) \tag{85}\\
I_{1}(\beta \tilde{\Xi}) & \simeq I_{1}\left(\beta J_{0} R\right)+\beta J_{0} R \frac{1}{2} k^{2} \sin ^{2} \theta I_{2}\left(\beta J_{0} R\right), \tag{86}\\
\frac{I_{1}(\beta \tilde{\Xi})}{I_{0}(\beta \tilde{\Xi})} & =\frac{I_{1}\left(\beta J_{0} R\right)+\mathcal{O}\left(k^{2}\right)}{I_{0}\left(\beta J_{0} R\right)+\mathcal{O}\left(k^{2}\right)} \simeq \frac{I_{1}\left(\beta J_{0} R\right)}{I_{0}\left(\beta J_{0} R\right)} . \tag{87}
\end{align*}
$$

Therefore, the SPE for R becomes

$$
\begin{align*}
R & \simeq R J_{0} \frac{2}{\pi} \int_{0}^{\pi / 2} d \theta \frac{I_{1}(\beta \tilde{\Xi})}{I_{0}(\beta \tilde{\Xi})} \frac{1}{\tilde{\Xi}} \frac{1}{J_{0} R}\left(1-\frac{k^{2}}{2} \sin ^{2} \theta\right) \\
& \simeq \frac{2}{\pi} \int_{0}^{\pi / 2} d \theta \frac{I_{1}\left(\beta J_{0} R\right)}{I_{0}\left(\beta J_{0} R\right)}=\frac{I_{1}\left(\beta J_{0} R\right)}{I_{0}\left(\beta J_{0} R\right)} . \tag{88}
\end{align*}
$$

This is the equation for R when $J_{1}=0$, that is, this is the equation for the U solution. The equation for R_{1} is

$$
\begin{align*}
R_{1} & =R_{1} J_{1} \frac{2}{\pi} \int_{0}^{\pi / 2} d \theta \frac{I_{1}(\beta \tilde{\Xi})}{I_{0}(\beta \tilde{\Xi})} \frac{1}{\tilde{\Xi}} \sin ^{2}(\theta) \simeq k \frac{2}{\pi} \int_{0}^{\pi / 2} d \theta \frac{I_{1}(\beta \tilde{\Xi})}{I_{0}(\beta \tilde{\Xi})}\left(1-\frac{k^{2}}{2} \sin ^{2} \theta\right) \\
& \simeq k \frac{2}{\pi} \int_{0}^{\pi / 2} d \theta \frac{I_{1}\left(\beta J_{0} R\right)}{I_{0}\left(\beta J_{0} R\right)} \sin ^{2} \theta=\frac{k R}{2} \tag{89}
\end{align*}
$$

Therefore, we have

$$
\begin{align*}
R_{1} & =\frac{k R}{2}=\frac{J_{1} R_{1}}{J_{0} R} \frac{R}{2}=\frac{J_{1} R_{1}}{2 J_{0}} \\
1 & =\frac{J_{1}}{2 J_{0}} \\
J_{c} & =2=\left(\frac{J_{1}}{J_{0}}\right)_{c} \tag{90}
\end{align*}
$$

Thus, it turns out that the Pn solution bifurcates from the U solution at $J_{c}=2$ in the finite temperature as well.

4.2.5 Numerical results

In Fig. 2, we display the temperature dependences of order parameters for $J_{0}=1$ and $J_{1}=2.1$. Theoretical results are obtained by numerically solving the SPEs (56) and (57) for the Pn solution, and the SPE (35) for the S solution. The theoretical and numerical results agree well.

Fig. 2. Temperature dependences of order parameters. Curves: theory; eq. (35) for the U solution and eqs. (56) and (57) for the Pn solution. Symbols: Monte Carlo simulation ($N=10000$). Solid curve and $+: R$. Dashed curve and \times : R_{1}. In (a) and (b), theoretical results for the S and Pn solutions are depicted. Symbols: (a) Pn solution ($R>0, R_{1}>0$), (b) S solution ($R=0, R_{1}>0$). In (a), since the Pn solution disappears at higher temperatures, the S solution is numerically obtained at those temperatures.

Fig. 3. (a) phase diagram of the scaled parameter space. Curves: theory. Symbols: Monte Carlo simulation. The vertical line is the parameter shown in (b). (b) βJ_{1} dependences of order parameters in the XY model. $\beta J_{0}=4$. Solid curves: stable solutions; dashed curves: unstable solutions with superscript U, e.g., S^{U}.

§5. Determination of Phase Boundaries of Bistable Regions

In this section, we study the boundaries of several phases in $\left(J_{0}, J_{1}\right)$ space. We showed that the boundary between the U and Pn phases is given by $J_{1}=2 J_{0}$ in the previous section. In this section, we study the boundary between the S and U phases and that between the Pn and S phases.

5.1 Boundary between the S and U phases

As noted in Ref. 7 , when βJ_{1} is reduced by fixing βJ_{0} to 4 , an unstable Pn solution and a stable S solution merge, and an unstable S solution appears. See Fig. 3(b). At the parameter where the stable U solution disappears, the R of the Pn solution is 0 , and the R_{1} values of the Pn and S solutions are the same. Before and after the disappearance of the stable S solution, there exists a stable U solution. Thus, the boundary between the S and U solutions is where the stable S solution disappears. Solutions 2 and 4 for the Pn solution coincide when $R_{c}=R_{s}$, and these solutions give the spinning solutions when $R=0$. Therefore, it is considered that solution 2 is the unstable Pn solution. We do not assume $R_{c}=R_{s}$, but it is proved that this relation holds at the boundary. The quantities we treat are

$$
\begin{align*}
f & =\frac{1}{2}\left(J_{0} R^{2}+J_{1} R_{1}^{2}\right)-\frac{1}{\beta} \frac{1}{\pi} \int_{0}^{\pi} d \theta \ln \left\{2 \pi I_{0}(\beta \tilde{\Xi}(\theta))\right\}, \tag{91}\\
\tilde{\Xi}(\theta) & =\sqrt{\left(J_{0} R+J_{1} R_{c} \cos \theta\right)^{2}+\left(J_{1} R_{s} \sin \theta\right)^{2}} . \tag{92}
\end{align*}
$$

The SPEs are

$$
\begin{align*}
R= & \left\langle J_{0} R+J_{1} R_{c} \cos \theta\right\rangle, \tag{93}\\
R_{c}= & \left\langle\left(J_{0} R+J_{1} R_{c} \cos \theta\right) \cos \theta\right\rangle, \tag{94}\\
R_{s}= & J_{1} R_{s}\left\langle\sin ^{2} \theta\right\rangle, \tag{95}\\
& \langle A\rangle=\frac{1}{\pi} \int_{0}^{\pi} d \theta \frac{I_{1}(\beta \tilde{\Xi}(\theta))}{I_{0}(\beta \tilde{\Xi}(\theta))} \tilde{\tilde{\Xi}(\theta)} A, \tag{96}\\
& I_{n}(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} d \phi e^{z \cos \phi} \cos (n \phi) . \tag{97}
\end{align*}
$$

Assuming $R \ll 1$, the Taylor expansion of $\tilde{\Xi}(\theta)$ up to $\mathcal{O}(R)$ becomes

$$
\begin{align*}
\tilde{\Xi}(\theta) & \simeq J_{1} \tilde{\Xi}_{0}(\theta)\left(1+\frac{J_{0} R_{c} \cos \theta}{J_{1} \tilde{\Xi}_{0}(\theta)^{2}} R\right), \tag{98}\\
\tilde{\Xi}_{0}(\theta) & =\sqrt{\left(R_{c} \cos \theta\right)^{2}+\left(R_{s} \sin \theta\right)^{2}} . \tag{99}
\end{align*}
$$

Therefore, I_{0} and I_{1} are expressed as

$$
\begin{aligned}
I_{0}(\beta \tilde{\Xi}(\theta)) & \simeq \frac{1}{2 \pi} \int_{0}^{2 \pi} d \phi e^{\beta J_{1} \tilde{\Xi}_{0}(\theta) \cos \phi}\left(1+\frac{\beta J_{0} R_{c} \cos \theta}{\tilde{\Xi}_{0}(\theta)} R \cos \phi\right) \\
& =I_{0}\left(\beta J_{1} \tilde{\Xi}_{0}(\theta)\right)+I_{1}\left(\beta J_{1} \tilde{\Xi}_{0}(\theta)\right) \frac{\beta J_{0} R_{c} \cos \theta}{\tilde{\Xi}_{0}(\theta)} R \\
I_{1}(\beta \tilde{\Xi}(\theta)) & \simeq \frac{1}{2 \pi} \int_{0}^{2 \pi} d \phi e^{\beta J_{1} \tilde{\Xi}_{0}(\theta) \cos \phi}\left(1+\frac{\beta J_{0} R_{c} \cos \theta}{\tilde{\Xi}_{0}(\theta)} R \cos \phi\right) \cos \phi \\
& =I_{1}\left(\beta J_{1} \tilde{\Xi}_{0}(\theta)\right)+\frac{1}{2}\left(I_{0}\left(\beta J_{1} \tilde{\Xi}_{0}(\theta)\right)+I_{2}\left(\beta J_{1} \tilde{\Xi}_{0}(\theta)\right)\right) \frac{\beta J_{0} R_{c} \cos \theta}{\tilde{\Xi}_{0}(\theta)} R
\end{aligned}
$$

Thus, the SPEs are

$$
\begin{align*}
R \simeq & J_{0} R\langle 1\rangle_{0}+J_{1} R_{c}\langle\cos \theta\rangle \tag{100}\\
R_{c} \simeq & J_{0} R\langle\cos \theta\rangle_{0}+J_{1} R_{c}\left\langle\cos ^{2} \theta\right\rangle \tag{101}\\
R_{s} \simeq & J_{1} R_{s}\left\langle\sin ^{2} \theta\right\rangle \tag{102}\\
& \langle A\rangle_{0}=\frac{1}{\pi} \int_{0}^{\pi} d \theta \frac{I_{1}\left(\beta J_{1} \tilde{\Xi}_{0}(\theta)\right)}{I_{0}\left(\beta J_{1} \tilde{\Xi}_{0}(\theta)\right)} \frac{1}{J_{1} \tilde{\Xi}_{0}(\theta)} A . \tag{103}
\end{align*}
$$

Since $\langle\cos \theta\rangle_{0}=0$, taking the limit $R \rightarrow 0$ in eqs. (101) and (102), $\left\langle\cos ^{2} \theta\right\rangle_{0}=\left\langle\sin ^{2} \theta\right\rangle_{0}$ follows exactly when $R_{c} R_{s} \neq 0$. This implies $R_{c}=R_{s}$ at the phase boundary. Thus, we have the following relations:

$$
\begin{aligned}
& \tilde{\Xi}_{0}(\theta)=R_{c}=\frac{R_{1}}{\sqrt{2}}, \\
& \tilde{\Xi}(\theta) \simeq J_{1} R_{c}+J_{0} R \cos \theta, \\
& I_{0}(\beta \tilde{\Xi}(\theta)) \simeq I_{0}\left(\bar{J}_{1} R_{c}\right)+I_{1}\left(\bar{J}_{1} R_{c}\right) \bar{J}_{0} R \cos \theta, \\
& I_{1}(\beta \tilde{\Xi}(\theta)) \simeq I_{1}\left(\bar{J}_{1} R_{c}\right)+\frac{1}{2}\left(I_{0}\left(\bar{J}_{1} R_{c}\right)+I_{2}\left(\bar{J}_{1} R_{c}\right)\right) \bar{J}_{0} R \cos \theta, \\
& \frac{I_{1}(\beta \tilde{\Xi}(\theta))}{I_{0}(\beta \tilde{\Xi}(\theta))} \simeq \frac{I_{1}\left(\bar{J}_{1} R_{c}\right)}{I_{0}\left(\bar{J}_{1} R_{c}\right)} \frac{1+\frac{1}{2}\left(\frac{I_{0}\left(\bar{J}_{1} R_{c}\right)+I_{2}\left(\bar{J}_{1} R_{c}\right)}{I_{1}\left(\bar{J}_{1} R_{c}\right)}\right) \bar{J}_{0} R \cos \theta}{1+\bar{J}_{0} R \cos \theta \frac{I_{1}\left(\bar{J}_{1} R_{c}\right)}{I_{0}\left(\bar{J}_{1} R_{c}\right)}} \\
& \simeq \frac{I_{1}\left(\bar{J}_{1} R_{c}\right)}{I_{0}\left(\bar{J}_{1} R_{c}\right)}\left[1+\left(\frac{I_{0}\left(\bar{J}_{1} R_{c}\right)+I_{2}\left(\bar{J}_{1} R_{c}\right)}{2 I_{1}\left(\bar{J}_{1} R_{c}\right)}-\frac{I_{1}\left(\bar{J}_{1} R_{c}\right)}{I_{0}\left(\bar{J}_{1} R_{c}\right)}\right) \bar{J}_{0} R \cos \theta\right], \\
& \simeq \frac{1}{J_{1} R_{c}\left(1+\frac{J_{0} R}{J_{1} R_{c}} \cos \theta\right)} \simeq \frac{1}{J_{1} R_{c}}\left(1-\frac{J_{0} R}{J_{1} R_{c}} \cos \theta\right), \\
& \frac{1}{\tilde{\Xi}(\theta)} \simeq \frac{I_{1}\left(\bar{J}_{1} R_{c}\right)}{I_{0}\left(\bar{J}_{1} R_{c}\right)} \frac{1}{J_{1} R_{c}} \\
& \frac{\left.I_{1} \tilde{\Xi}(\theta)\right)}{I_{0}(\beta \tilde{\Xi}(\theta))} \frac{1}{\tilde{\Xi}(\theta)} \times\left[1+\left(\frac{I_{0}\left(\bar{J}_{1} R_{c}\right)+I_{2}\left(\bar{J}_{1} R_{c}\right)}{2 I_{1}\left(\bar{J}_{1} R_{c}\right)}-\frac{I_{1}\left(\bar{J}_{1} R_{c}\right)}{I_{0}\left(\bar{J}_{1} R_{c}\right)}-\frac{1}{\bar{J}_{1} R_{c}}\right) \bar{J}_{0} R \cos \theta .\right]
\end{aligned}
$$

Here, we put $\bar{J}_{n}=\beta J_{n}$. By using these relations, $\langle\cos \theta\rangle$ is expressed as

$$
\begin{aligned}
\langle\cos \theta\rangle= & \frac{1}{\pi} \int_{0}^{\pi} d \theta \frac{I_{1}(\beta \tilde{\Xi}(\theta))}{I_{0}(\beta \tilde{\Xi}(\theta))} \frac{1}{\tilde{\Xi}(\theta)} \cos \theta \\
\simeq & \frac{1}{\pi} \int_{0}^{\pi} d \theta \frac{I_{1}\left(\bar{J}_{1} R_{c}\right)}{I_{0}\left(\bar{J}_{1} R_{c}\right)} \frac{1}{J_{1} R_{c}} \\
& \times\left[\cos \theta+\left(\frac{I_{0}\left(\bar{J}_{1} R_{c}\right)+I_{2}\left(\bar{J}_{1} R_{c}\right)}{2 I_{1}\left(\bar{J}_{1} R_{c}\right)}-\frac{I_{1}\left(\bar{J}_{1} R_{c}\right)}{I_{0}\left(\bar{J}_{1} R_{c}\right)}-\frac{1}{\bar{J}_{1} R_{c}}\right) \bar{J}_{0} R \cos ^{2} \theta\right] \\
= & \frac{I_{1}\left(\bar{J}_{1} R_{c}\right)}{2 I_{0}\left(\bar{J}_{1} R_{c}\right)} \frac{1}{J_{1} R_{c}}\left(\frac{I_{0}\left(\bar{J}_{1} R_{c}\right)+I_{2}\left(\bar{J}_{1} R_{c}\right)}{2 I_{1}\left(\bar{J}_{1} R_{c}\right)}-\frac{I_{1}\left(\bar{J}_{1} R_{c}\right)}{I_{0}\left(\bar{J}_{1} R_{c}\right)}-\frac{1}{\bar{J}_{1} R_{c}}\right) \bar{J}_{0} R
\end{aligned}
$$

Below, we put $\bar{I}_{n}=I_{n}\left(\bar{J}_{1} R_{c}\right)$. Equation (100) becomes

$$
\begin{align*}
R & \simeq J_{0} R \frac{\bar{I}_{1}}{J_{1} R_{c} \bar{I}_{0}}+J_{1} R_{c} \frac{\bar{I}_{1}}{2 \bar{I}_{0}} \frac{1}{J_{1} R_{c}}\left(\frac{\bar{I}_{0}+\bar{I}_{2}}{2 \bar{I}_{1}}-\frac{\bar{I}_{1}}{\bar{I}_{0}}-\frac{1}{\bar{J}_{1} R_{c}}\right) \bar{J}_{0} R \\
& =\bar{J}_{0} R \frac{\bar{I}_{1}}{\bar{J}_{1} R_{c} \bar{I}_{0}}+\frac{\bar{I}_{1}}{2 \bar{I}_{0}}\left(\frac{\bar{I}_{0}+\bar{I}_{2}}{2 \bar{I}_{1}}-\frac{\bar{I}_{1}}{\bar{I}_{0}}-\frac{1}{\bar{J}_{1} R_{c}}\right) \bar{J}_{0} R . \tag{104}
\end{align*}
$$

Therefore, the following relation holds at the boundary:

$$
\begin{equation*}
1=\bar{J}_{0} \frac{\bar{I}_{1}}{\bar{J}_{1} R_{c} \bar{I}_{0}}+\frac{\bar{I}_{1}}{2 \bar{I}_{0}}\left(\frac{\bar{I}_{0}+\bar{I}_{2}}{2 \bar{I}_{1}}-\frac{\bar{I}_{1}}{\bar{I}_{0}}-\frac{1}{\bar{J}_{1} R_{c}}\right) \bar{J}_{0} . \tag{105}
\end{equation*}
$$

On the other hand, at the boundary, eq. (101) becomes

$$
\begin{aligned}
1 & =J_{1}\left\langle\cos ^{2} \theta\right\rangle_{0} \\
& =J_{1} \frac{1}{\pi} \int_{0}^{\pi} d \theta \frac{\bar{I}_{1}}{\bar{I}_{0}} \frac{1}{J_{1} R_{c}} \cos ^{2} \theta=J_{1} \frac{\bar{I}_{1}}{\bar{I}_{0}} \frac{1}{2 J_{1} R_{c}}=\frac{\bar{I}_{1}}{\bar{I}_{0}} \frac{1}{2 R_{c}}
\end{aligned}
$$

Therefore, we obtain

$$
\begin{equation*}
R_{c}=\frac{\bar{I}_{1}}{2 \bar{I}_{0}} \tag{106}
\end{equation*}
$$

This is nothing but the equation for the stable S solution. Thus, eq. (105) becomes

$$
\begin{aligned}
1 & =\bar{J}_{0} \frac{2}{\bar{J}_{1}}+R_{c}\left(\frac{\bar{I}_{0}+\bar{I}_{2}}{2 \bar{I}_{1}}-\frac{\bar{I}_{1}}{\bar{I}_{0}}-\frac{1}{\bar{J}_{1} R_{c}}\right) \bar{J}_{0} \\
& =\frac{\bar{J}_{0}}{\bar{J}_{1}}+R_{c}\left(\frac{\bar{I}_{0}+\bar{I}_{2}}{2 \bar{I}_{1}}-\frac{\bar{I}_{1}}{\bar{I}_{0}}\right) \bar{J}_{0}
\end{aligned}
$$

Therefore, the equation which determines the boundary between the S and U phases is given by

$$
\begin{equation*}
\bar{J}_{0}=\left[\frac{1}{\bar{J}_{1}}+R_{c}\left(\frac{\bar{I}_{0}+\bar{I}_{2}}{2 \bar{I}_{1}}-\frac{\bar{I}_{1}}{\bar{I}_{0}}\right)\right]^{-1}=\left[\frac{1}{\bar{J}_{1}}+\left(\frac{\bar{I}_{0}+\bar{I}_{2}}{2 \bar{I}_{1}}-\frac{\bar{I}_{1}}{\bar{I}_{0}}\right) \frac{\bar{I}_{1}}{2 \bar{I}_{0}}\right]^{-1} \tag{107}
\end{equation*}
$$

5.2 Boundary between the S and Pn phases

As studied in Ref. 7 , when βJ_{1} is increased by fixing βJ_{0} to 4 , a stable Pn solution and an unstable Pn solution merge and only the unstable Pn solution remains. See Fig. 3(b). At the parameter where the stable Pn solution disappears, $R_{c}=0$ holds. The unstable Pn solution is
solution 2 and it coincides with solution 1 when $R_{c}=0$. Therefore, the boundary between the S and Pn phases is where R_{c} becomes 0 for solution 2. Assuming $R_{c} \ll 1$ in solution 2, the Taylor expansion of $\hat{\Xi}(\theta)=\beta \tilde{\Xi}$ up to $\mathcal{O}\left(R_{c}\right)$ is

$$
\begin{align*}
\hat{\Xi}(\theta) & =\sqrt{\left(\bar{J}_{0} R+\bar{J}_{1} R_{c} \cos \theta\right)^{2}+\left(\bar{J}_{1} R_{s} \sin \theta\right)^{2}} \\
& \simeq \sqrt{\left(\bar{J}_{0} R\right)^{2}+\left(\bar{J}_{1} R_{s} \sin \theta\right)^{2}+2 \bar{J}_{0} \bar{J}_{1} R R_{c} \cos \theta} \\
& \simeq \hat{\Xi}_{0}\left(1+\frac{\bar{J}_{0} \bar{J}_{1} R R_{c} \cos \theta}{\hat{\Xi}_{0}^{2}}\right) \tag{108}\\
\hat{\Xi}_{0}(\theta) & =\sqrt{\left(\bar{J}_{0} R\right)^{2}+\left(\bar{J}_{1} R_{s} \sin \theta\right)^{2}} . \tag{109}
\end{align*}
$$

Therefore, I_{0} and I_{1} are expressed as

$$
\begin{align*}
I_{0}(\hat{\Xi}(\theta)) \simeq & \frac{1}{2 \pi} \int_{0}^{2 \pi} d \phi e^{\hat{\Xi}_{0} \cos \phi}\left(1+\frac{\bar{J}_{0} \bar{J}_{1} R \cos \theta}{\hat{\Xi}_{0}(\theta)} R_{c} \cos \phi\right) \\
= & I_{0}^{*}+\frac{\bar{J}_{0} \bar{J}_{1} R \cos \theta}{\hat{\Xi}_{0}(\theta)} R_{c} I_{1}^{*} \tag{110}\\
I_{1}(\hat{\Xi}(\theta)) \simeq & I_{1}^{*}+\frac{\bar{J}_{0} \bar{J}_{1} R \cos \theta}{\hat{\Xi}_{0}(\theta)} R_{c} \frac{I_{0}^{*}+I_{2}^{*}}{2} \tag{111}\\
\frac{I_{1}(\hat{\Xi}(\theta))}{I_{0}(\hat{\Xi}(\theta))} \frac{1}{\hat{\Xi}(\theta)} \simeq & \frac{I_{1}^{*}}{I_{0}^{*}} \frac{1}{\hat{\Xi}_{0}} \\
& \times\left[1+\left(\frac{I_{0}^{*}+I_{2}^{*}}{2 I_{1}^{*}}-\frac{I_{1}^{*}}{I_{0}^{*}}-\frac{1}{\hat{\Xi}_{0}}\right) \frac{1}{\hat{\Xi}_{0}} \bar{J}_{0} \bar{J}_{1} R R_{c} \cos \theta\right] . \tag{112}
\end{align*}
$$

Here, we put $I_{n}^{*}=I_{n}\left(\hat{\Xi}_{0}\right)$. Therefore, the SPE for R_{c}, eq. (94), is

$$
\begin{aligned}
R_{c}= & \frac{1}{\pi} \int_{0}^{\pi} d \theta \frac{I_{1}(\hat{\Xi}(\theta))}{I_{0}(\hat{\Xi}(\theta))} \frac{1}{\hat{\Xi}(\theta)}\left(\bar{J}_{0} R+\bar{J}_{1} R_{c} \cos \theta\right) \cos \theta \\
\simeq & \frac{1}{\pi} \int_{0}^{\pi} d \theta \frac{I_{1}^{*}}{I_{0}^{*}} \frac{1}{\hat{\Xi}_{0}} \\
& \times\left[1+\left(\frac{I_{0}^{*}+I_{2}^{*}}{2 I_{1}^{*}}-\frac{I_{1}^{*}}{I_{0}^{*}}-\frac{1}{\hat{\Xi}_{0}}\right) \frac{1}{\hat{\Xi}_{0}} \bar{J}_{0} \bar{J}_{1} R R_{c} \cos \theta\right]\left(\bar{J}_{0} R+\bar{J}_{1} R_{c} \cos \theta\right) \cos \theta
\end{aligned}
$$

Since the integration of odd power of $\cos \theta$ is 0 , we obtain

$$
\begin{align*}
R_{c} \simeq & \frac{1}{\pi} \int_{0}^{\pi} d \theta \frac{I_{1}^{*}}{I_{0}^{*}} \frac{1}{\hat{\Xi}_{0}} \\
& \times \bar{J}_{1} R_{c}\left[1+\left(\frac{I_{0}^{*}+I_{2}^{*}}{2 I_{1}^{*}}-\frac{I_{1}^{*}}{I_{0}^{*}}-\frac{1}{\hat{\Xi}_{0}}\right) \frac{1}{\hat{\Xi}_{0}}\left(\bar{J}_{0} R\right)^{2}\right] \cos ^{2} \theta \tag{113}
\end{align*}
$$

Therefore, the boundary between the S and Pn phases is determined by

$$
\begin{equation*}
1=\frac{1}{\pi} \int_{0}^{\pi} d \theta \frac{I_{1}^{*}}{I_{0}^{*}} \frac{1}{\hat{\Xi}_{0}} \bar{J}_{1}\left[1+\left(\frac{I_{0}^{*}+I_{2}^{*}}{2 I_{1}^{*}}-\frac{I_{1}^{*}}{I_{0}^{*}}-\frac{1}{\hat{\Xi}_{0}}\right) \frac{1}{\hat{\Xi}_{0}}\left(\bar{J}_{0} R\right)^{2}\right] \cos ^{2} \theta \tag{114}
\end{equation*}
$$

On the other hand, the SPEs for R, eq. (93), and R_{s}, eq. (95), at the boundary are

$$
\begin{align*}
1 & =\bar{J}_{0} \frac{1}{\pi} \int_{0}^{\pi} d \theta \frac{I_{1}^{*}}{I_{0}^{*}} \frac{1}{\hat{\Xi}_{0}} \tag{115}\\
1 & =\bar{J}_{1} \frac{1}{\pi} \int_{0}^{\pi} d \theta \frac{I_{1}^{*}}{I_{0}^{*}} \frac{1}{\hat{\Xi}_{0}} \sin ^{2} \theta \tag{116}
\end{align*}
$$

These are the SPEs for solution 1 of the Pn phase.

5.3 Numerical results

We display the phase diagram in the scaled parameter space in Fig. 3(a). There are five curves in the figure, and these curves represent theoretical results. Those are $\beta J_{0}=2$, eq. (18) for the boundary between the P and U phases, $\beta J_{1}=4$, eq. (36) for that between the P and S phases, $J_{1}=2 J_{0}$, eq. (90) for that between the U and Pn phases, eq. (107) for that between the U and S phases, and eq. (114) for that between the S and Pn phases. The theoretical and numerical results agree well.

§6. Summary and Discussion

In this paper, we studied the XY model on a circle with the Mexican-hat type interaction. The interaction is composed of two terms, one of which is the uniform interaction with the strength J_{0}, and the other is the sinusoidal interaction with respect to the location θ of oscillators with the strength J_{1}. If $J_{1}=0$, it is the ferromagnetic XY model. The order parameters that characterize solutions of SPEs are R and R_{1}. The SPEs for the XY model were obtained analytically. There are four phases. The paramagnetic phase with $R=0$ and $R_{1}=0$ is the disordered phase. In the uniform phase with $R>0$ and $R_{1}=0$, the phases of the XY spins do not depend on the location of spins. In the spinning phase with $R=0$ and $R_{1}>0$, the phases of the XY spins change by 2π when the coordinate of spin θ changes by 2π. In the pendulum phase with $R>0$ and $R_{1}>0$, the phases do not change by 2π but fluctuate when the coordinate of spins θ changes by 2π.

The SPEs and the differences between the phases of complex order parameters were derived analytically. We proved that the Pn solution bifurcates from the U solution at $J_{1}=2 J_{0}$ and found that the coexisting stable nontrivial solutions are the U and S solutions, and the S and Pn solutions. Finally, we derived the boundary between the S and U phases, and that between the S and Pn phases.

In the present study, we considered the first two Fourier components as the interaction components. How the existing phases and phase transitions depend on the types of the interaction is an interesting question. The XY model in which the interaction is composed of the first and second Fourier components is now under investigation, and different types of phases and phase transitions are found. These results will be reported elsewhere.

In the context of the synchronization - desynchronization phase transition, the phase oscillator network has been investigated extensively since Kuramoto introduced the globally coupled model. ${ }^{2-4,8-12}$ In general, the phase oscillator model with uniform natural frequency coincides with the classical XY model at zero temperature, if the interactions in both models are the same. We are now studying the phase oscillator network model with the Mexican-hat type interaction and clarifying the resemblance of both models. These results will be reported in the future.

Appendix: Derivation of SPEs

A. 1 Case of $\tilde{R} \neq 0$
(1) Case of $R_{c} R_{s} \neq 0$

Solution 1. Case of $\tilde{\Theta}_{c}=-\frac{\pi}{2}$ and $\tilde{\Theta}_{s}=\frac{\pi}{2}$.
From eqs. (42) - (44), we obtain

$$
\begin{align*}
& \tilde{R} \cos \bar{\theta}=-R_{c}, \quad \tilde{R} \sin \bar{\theta}=R_{s}, \\
& \tilde{R}=R_{1}=\sqrt{R_{c}^{2}+R_{s}^{2}}, \\
\tilde{\Xi}(\theta)= & \sqrt{\left(J_{0} R\right)^{2}+\left(J_{1} R_{1} \sin \theta\right)^{2}} .
\end{align*}
$$

Therefore, we obtain

$$
f=\frac{1}{2}\left(J_{0} R^{2}+J_{1} R_{1}^{2}\right)-\frac{1}{\beta} \frac{2}{\pi} \int_{0}^{\pi / 2} d \theta \ln \left\{2 \pi I_{0}(\beta \tilde{\Xi}(\theta))\right\}
$$

Since $\langle\cos \theta\rangle=0$, eq. (53) is automatically satisfied. The SPEs are

$$
\begin{align*}
R & =R J_{0} \frac{2}{\pi} \int_{0}^{\pi / 2} d \theta \frac{I_{1}(\beta \tilde{\Xi})}{I_{0}(\beta \tilde{\Xi})} \frac{1}{\tilde{\Xi}} \\
R_{1} & =R_{1} J_{1} \frac{2}{\pi} \int_{0}^{\pi / 2} d \theta \frac{I_{1}(\beta \tilde{\Xi})}{I_{0}(\beta \tilde{\Xi})} \frac{1}{\tilde{\Xi}} \sin ^{2}(\theta)
\end{align*}
$$

The solution for these equations agrees with numerical results. For the following cases of $\left(\tilde{\Theta}_{c}, \tilde{\Theta}_{s}\right)$,

$$
\left(\tilde{\Theta}_{c}, \tilde{\Theta}_{s}\right)=\left(\frac{\pi}{2}, \frac{\pi}{2}\right),\left(\frac{\pi}{2},-\frac{\pi}{2}\right),\left(-\frac{\pi}{2},-\frac{\pi}{2}\right),
$$

$\tilde{\Xi}$ is the same as eq. $(\mathrm{A} \cdot 3)$. Therefore, the SPEs for these cases are the same as $(\mathrm{A} \cdot 5)$ and (A•6).
For the following cases of $\left(\tilde{\Theta}_{c}, \tilde{\Theta}_{s}\right)$,

$$
\left(\tilde{\Theta}_{c}, \tilde{\Theta}_{s}\right)=(0,0),(\pi, \pi),(0, \pi),(\pi, 0)
$$

from eq. (44), $\tilde{R}=0$ follows, and these cases are excluded.
Solution 2. Case of $\left(\tilde{\Theta}_{c}, \tilde{\Theta}_{s}\right)=\left(0, \frac{\pi}{2}\right)$
From eq. (44), $\tilde{R}=R_{s}$ follows. From eq. (43), we obtain $R_{s} \cos \bar{\theta}=0, R_{s} \sin \bar{\theta}=R_{s}$. That is, $\bar{\theta}=\frac{\pi}{2}$ follows. Therefore, we obtain

$$
\begin{gather*}
\tilde{R}=R_{s}, \bar{\theta}=\frac{\pi}{2} \\
\tilde{\Xi}(\theta)=\sqrt{\left(J_{0} R+J_{1} R_{c} \cos \theta\right)^{2}+\left(J_{1} R_{s} \sin \theta\right)^{2}} .
\end{gather*}
$$

Thus, eq. (53) is automatically satisfied.

When $R=0$, this solution gives the spinning solution of $J_{0}=0$.
Solution 3 ($=$ solution2). Case of $\left(\tilde{\Theta}_{c}, \tilde{\Theta}_{s}\right)=\left(0,-\frac{\pi}{2}\right)$
From eq. (44), $\tilde{R}=R_{s}$ follows. From eq. (43), we obtain $R_{s} \cos \bar{\theta}=0, R_{s} \sin \bar{\theta}=-R_{s}$. That is, $\bar{\theta}=-\frac{\pi}{2}$ follows. Therefore, we obtain

$$
\begin{gather*}
\tilde{R}=R_{s}, \bar{\theta}=-\frac{\pi}{2}, \tag{A•11}\\
\tilde{\Xi}(\theta)=\sqrt{\left(J_{0} R-J_{1} R_{c} \cos \theta\right)^{2}+\left(J_{1} R_{s} \sin \theta\right)^{2}} . \tag{A•12}
\end{gather*}
$$

Thus, eq. (53) is automatically satisfied. If we put $\theta^{\prime}=\pi-\theta$, this case coincides with the case of $\left(\tilde{\Theta}_{c}, \tilde{\Theta}_{s}\right)=\left(0, \frac{\pi}{2}\right)$.
Solution 4. Case of $\left(\tilde{\Theta}_{c}, \tilde{\Theta}_{s}\right)=\left(\frac{\pi}{2}, 0\right)$
From eq. (44), $\tilde{R}=R_{c}$ follows. From eq. (43), we obtain $R_{c} \cos \bar{\theta}=R_{c}, R_{c} \sin \bar{\theta}=0$. That is, $\bar{\theta}=0$ follows. Therefore, we obtain

$$
\begin{gather*}
\tilde{R}=R_{c}, \bar{\theta}=0 \tag{A•13}\\
\tilde{\Xi}(\theta)=\sqrt{\left(J_{0} R-J_{1} R_{s} \cos \theta\right)^{2}+\left(J_{1} R_{c} \sin \theta\right)^{2}} . \tag{A•14}
\end{gather*}
$$

Thus, eq. (53) is automatically satisfied. If we put $\theta=\pi / 2-\theta^{\prime}$, we have $\hat{\Xi}\left(\theta^{\prime}\right) \equiv \tilde{\Xi}\left(\pi / 2-\theta^{\prime}\right)=$ $\sqrt{\left(J_{0} R-J_{1} R_{s} \sin \theta^{\prime}\right)^{2}+\left(J_{1} R_{c} \cos \theta^{\prime}\right)^{2}}$. Then, when $R=0$, this gives the spinning solution of $J_{0}=0$.
Solution 5 (=solution 4). Case of $\left(\tilde{\Theta}_{c}, \tilde{\Theta}_{s}\right)=\left(-\frac{\pi}{2}, 0\right)$
From eqs. (43) and (44), $\tilde{R}=-R_{c}$ and $\bar{\theta}=\pi$ follow. Therefore, we have

$$
\begin{gather*}
\tilde{R}=-R_{c}, \bar{\theta}=\pi \\
\tilde{\Xi}(\theta)=\sqrt{\left(J_{0} R+J_{1} R_{s} \cos \theta\right)^{2}+\left(J_{1} R_{c} \sin \theta\right)^{2}} . \tag{A•16}
\end{gather*}
$$

Thus, eq. (53) is automatically satisfied. Putting $\theta^{\prime}=\pi-\theta$, we note that this case coincides with the case of $\left(\tilde{\Theta}_{c}, \tilde{\Theta}_{s}\right)=\left(\frac{\pi}{2}, 0\right)$.
(2) Case of $R_{c}=0$

From eq. (44), $\tilde{R}=\left|R_{s} \sin \tilde{\Theta}_{s}\right|$ follows. Therefore, for $\tilde{\Theta}_{s}=\left(0, \pm \frac{\pi}{2}, \pi\right), \tilde{R}$ becomes $\left(0, R_{s}, 0\right)$, respectively. Thus, we obtain $\tilde{\Theta}_{s}= \pm \frac{\pi}{2}$, and from eq. (43), $R_{s} \sin \bar{\theta}=R_{s} \sin \tilde{\Theta}_{s}= \pm R_{s}$ follows. Thus, we obtain $\bar{\theta}= \pm \frac{\pi}{2}$. Since we have

$$
\begin{equation*}
\tilde{\Xi}(\theta)=\sqrt{\left(J_{0} R\right)^{2}+\left(J_{1} R_{s} \sin \theta\right)^{2}} \tag{A•17}
\end{equation*}
$$

the present solution coincides with the solution obtained by putting $R_{c}=0$ in solutions 2 and 3.
(3) Case of $R_{s}=0$

From eq. (44), $\tilde{R}=\left|R_{c} \sin \tilde{\Theta}_{c}\right|$ follows. Therefore, for $\tilde{\Theta}_{c}=\left(0, \pm \frac{\pi}{2}, \pi\right), \tilde{R}$ becomes $\left(0, R_{c}, 0\right)$, respectively. Thus, we obtain $\tilde{\Theta}_{c}= \pm \frac{\pi}{2}$, and from eq. (43), $R_{c} \cos \bar{\theta}=R_{c} \sin \tilde{\Theta}_{c}= \pm R_{c}$ follows.

Thus, we obtain $\bar{\theta}=0, \pi$. Since we have

$$
\tilde{\Xi}(\theta)=\sqrt{\left(J_{0} R\right)^{2}+\left(J_{1} R_{c} \sin \theta\right)^{2}}
$$

the present solution coincides with the solution obtained by putting $R_{s}=0$ in solutions 4 and 5.

Therefore, for $\tilde{R} \neq 0$, solutions other than solution 1 are

$$
\begin{align*}
& \left(\tilde{\Theta}_{c}, \tilde{\Theta}_{s}\right)=\left(0, \frac{\pi}{2}\right), \tilde{R}=R_{s}, \bar{\theta}=\frac{\pi}{2} \\
& \left(\tilde{\Theta}_{c}, \tilde{\Theta}_{s}\right)=\left(0,-\frac{\pi}{2}\right), \tilde{R}=R_{s}, \bar{\theta}=-\frac{\pi}{2} \\
& \tilde{\Xi}(\theta)=\sqrt{\left(J_{0} R-J_{1} R_{c} \cos \theta\right)^{2}+\left(J_{1} R_{s} \sin \theta\right)^{2}}
\end{align*}
$$

and the solution with $R_{c}=0$ in this solution, and the solution

$$
\begin{align*}
& \left(\tilde{\Theta}_{c}, \tilde{\Theta}_{s}\right)=\left(\frac{\pi}{2}, 0\right), \bar{\theta}=0 \\
& \left(\tilde{\Theta}_{c}, \tilde{\Theta}_{s}\right)=\left(-\frac{\pi}{2}, 0\right), \bar{\theta}=\pi \\
& \tilde{\Xi}(\theta)=\sqrt{\left(J_{0} R-J_{1} R_{s} \cos \theta\right)^{2}+\left(J_{1} R_{c} \sin \theta\right)^{2}}
\end{align*}
$$

and the solution with $R_{s}=0$ in this solution.

A.2 Case of $\tilde{R}=0$

The conditions are

$$
R_{c} \sin \tilde{\Theta}_{c}=0 \text { and } R_{s} \sin \tilde{\Theta}_{s}=0
$$

Therefore, from eq. (13), we obtain

$$
\Xi(\theta)=\left|J_{0} R+J_{1}\left(R_{c} \cos \tilde{\Theta}_{c} \cos \theta+R_{s} \cos \tilde{\Theta}_{s} \sin \theta\right)\right|
$$

From the conditions, we have

$$
\left\{R_{c}=0, \text { or } \tilde{\Theta}_{c}=0, \text { or } \tilde{\Theta}_{c}=\pi\right\}
$$

and

$$
\left\{R_{s}=0, \text { or } \tilde{\Theta}_{s}=0, \text { or } \tilde{\Theta}_{s}=\pi\right\}
$$

Therefore, we obtain the following cases:
(1) $R_{c}=0, R_{s}=0 \rightarrow R_{1}=0 \rightarrow$ Kuramoto model
(2) $R_{c}=0, \tilde{\Theta}_{s}=0, \rightarrow \Xi(\theta)=\left|J_{0} R+J_{1} R_{1} \sin \theta\right|,\left(R_{1}=R_{s}\right)$,
(3) $R_{c}=0, \tilde{\Theta}_{s}=\pi, \rightarrow \Xi(\theta)=\left|J_{0} R-J_{1} R_{1} \sin \theta\right|, \quad\left(R_{1}=R_{s}\right)$,
(4) $R_{s}=0, \tilde{\Theta}_{c}=0, \rightarrow, \Xi(\theta)=\left|J_{0} R+J_{1} R_{1} \cos \theta\right|, \quad\left(R_{1}=R_{c}\right)$,
(5) $R_{s}=0, \tilde{\Theta}_{c}=\pi, \rightarrow \Xi(\theta)=\left|J_{0} R-J_{1} R_{1} \cos \theta\right|, \quad\left(R_{1}=R_{c}\right)$,
(6) $\quad \tilde{\Theta}_{c}=0, \tilde{\Theta}_{s}=0, \rightarrow \Xi(\theta)=\left|J_{0} R+J_{1}\left(R_{c} \cos \theta+R_{s} \sin \theta\right)\right|$,
(7) $\tilde{\Theta}_{c}=0, \tilde{\Theta}_{s}=\pi, \rightarrow \Xi(\theta)=\left|J_{0} R+J_{1}\left(R_{c} \cos \theta-R_{s} \sin \theta\right)\right|$,
(8) $\tilde{\Theta}_{c}=\pi, \tilde{\Theta}_{s}=0, \rightarrow \Xi(\theta)=\left|J_{0} R-J_{1}\left(R_{c} \cos \theta-R_{s} \sin \theta\right)\right|$,
(9) $\tilde{\Theta}_{c}=\pi, \tilde{\Theta}_{s}=\pi, \rightarrow \Xi(\theta)=\left|J_{0} R-J_{1}\left(R_{c} \cos \theta+R_{s} \sin \theta\right)\right|$.
f is given by

$$
\begin{equation*}
=\frac{1}{2}\left(J_{0} R^{2}+J_{1} R_{1}^{2}\right)-\frac{1}{\beta} \frac{1}{2 \pi} \int_{0}^{2 \pi} d \theta \ln \left\{2 \pi I_{0}(\beta \Xi(\theta))\right\} \tag{A•26}
\end{equation*}
$$

By the coordinate transformations, such as $\theta=\theta^{\prime}+\pi, \theta=\frac{\pi}{2}-\theta^{\prime}$, and $\theta^{\prime}=\theta \pm \hat{\theta}$, and their combinations, cases (3) to (9) become the same as case (2). Here, we define $R_{c}=R_{1} \cos \hat{\theta}$ and $R_{s}=R_{1} \sin \hat{\theta}$ for cases (6) to (9). Furthermore, case 2 coincides with solutions 2 and 3 of $\tilde{R} \neq 0$ with $R_{s}=0$, and it also coincides with the solutions 4 and 5 of $\tilde{R} \neq 0$ when $R_{c}=0$. Therefore, solutions for the case of $\tilde{R}=0$ are derived from the solutions for the case of $\tilde{R} \neq 0$.

1) T. Uezu, T. Kimoto, and M. Okada: presented at The 24 th IUPAP International Conference on Statistical Physics, 2010, Cairns.
2) Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence (Springer-Verlag, Berlin, 1984)
3) Y. Kuramoto: in Proc. Int. Symp. Mathematical problems in Theoretical Physics, ed. H. Araki (Springer, New York, 1975).
4) J. A. Acebrón, L. L. Bonilla, C. J. Pérez Vicente, and F. Ritort: Rev. Mod. Phys. 77 (2005) 137, and papers cited therein.
5) D. H. Hubel and T. N. Wiesel: J. Physiol. 160 (1968) 106.
6) D. H. Hubel and T. N. Wiesel: J. Physiol. 195 (1968) 215.
7) T. Kimoto, T. Uezu, and M. Okada: J. Phys. Soc. Jpn. 80 (2011) No.7, 074005.
8) H. Sakaguchi, S. Shinomoto, and Y. Kuramoto: Prog. Theor. Phys. Lett. 77 (1987) 1005; Y. Kuramoto and H. Nakao: Phys. Rev. Lett. 76 (1996) 4352.
9) H. Daido: Phys. Rev. Lett. 68 (1992) 1073.
10) J. P. L. Hatchett and T. Uezu: Phys. Rev. E 78 (2008) 036106 ; J. P. L. Hatchett and T. Uezu: J. Phys. Soc. Jpn. 78 (2009) No.2, 024001.
11) R. E. Mirollo and S. H. Strogatz: J. Stat. Phys. 60 (1990) 245; R. E. Mirollo and S. H. Strogatz: J. Nonlinear Sci. 17, (2007) 309.
12) H. Chiba and I. Nishikawa: Chaos 21 (2011) 043103.

[^0]: * E-mail address: uezu@ki-rin.phys.nara-wu.ac.jp

