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Abstract

We study a phase oscillator network on a circle with an infinite-range interaction. Firstly, we

treat the Mexican-hat interaction with the zero-th and first Fourier components. We give detailed

derivations of the auxiliary equations for the phases and self-consistent equations for the amplitudes.

We solve these equations and characterize the non-trivial solutions in terms of order parameters

and the rotation number. Furthermore, we derive the boundaries of the bistable regions and study

the bifurcation structures in detail. Expressions for location-dependent resultant frequencies and

entrained phases are also derived. Secondly, we treat a different interaction that is composed of

m-th and n-th Fourier components, where m < n, and study its non-trivial solutions. In both

cases, the results of numerical simulations agree quite well with the theoretical results.
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I. INTRODUCTION

Synchronization phenomena are ubiquitous in nature, and they are very important to

living organisms. Typical examples include the simultaneous emission of light by fireflies,

the rhythm of the heart composed of a population of cardiac muscle cells, and circadian

rhythms [1, 2].

Pioneering studies on such behavior were done by Winfree [3] and Kuramoto [4]. In

particular, Kuramoto regarded synchronization as a phase transition and devised a model

in which synchronization occurs as a phase transition in a non-equilibrium system. In

general, when nonlinear dynamical systems with stable limit cycle oscillators are weakly

coupled, the whole system can be described in terms of the phases of the oscillators, and the

dynamical equation reduces to the evolution equation for phases [4]. Kuramoto proposed the

so-called Kuramoto model, which is a coupled phase oscillator network. He found that the

synchronization - desynchronization phase transition takes place when the system parameter

reaches a certain value and derived an analytic expression for the critical point [5]. Since

Kuramoto’s analysis of globally coupled oscillators, oscillator networks with both short-

range and intermediate-range interactions have been studied [6]. Oscillators with global

and random interactions [7] and with sparse and random interactions [8] have also been

studied. Moreover, a number of studies have analyzed the stability of the stationary states

[9–11]. Many of these studies use the Fokker-Planck equation to derive a phase distribution

density function with or without external noise. In particular, Otto and Antonsen derived

evolution equations for the order parameters by assuming a special form for the Fourier

components of the phase distribution density function [12]. Since this study, many studies

have been published on the dynamical behavior of order parameters [13, 14]. One of the

interesting findings is the so-called Chimera state, in which some fraction of the oscillators

are perfectly synchronized while the remainder are desynchronized [15–17]. Another topic

on general coupled oscillator networks is noise-induced synchronization. It has been found

that two identical nonlinear oscillators synchronize in the presence of common external

Gaussian noise [18]. This findings of this study has been extended to include systems with

common and oscillator dependent noise [19, 20], noise in the form of random impulses [21],

and common noise consisting of only two values [22]. A review of the Kuramoto model

and its extensions is available elsewhere [23]. There have also been extensive studies on

2



the statistical and dynamical properties of the mean-field XY model (HMF XY model) of

conservative dynamical systems that are related to oscillator network models of dissipative

dynamical systems [24, 25].

In our previous study [26], we investigated global coupled phase oscillators arranged on a

circle. The interaction between two elements depended on their distance. In particular, we

studied the Mexican-hat interaction, which is used in neuroscience studies to model feature

extraction cells in the visual cortex and embodies the property that a firing cell excites

nearby cells and inhibits distant cells [27]. The interaction is composed of the zero-th and

first Fourier components. We proposed a method to derive auxiliary equations that enable

us to determine the phases of three complex order parameters completely. By using these

phases, we obtained expressions for the self-consistent equations (SCEs) of the amplitude of

the order parameters and equations for the boundaries of the bistable regions. We performed

numerical simulations and found that they agreed quite well with the theoretical results.

In this study, firstly, we treat the interaction with the zero-th and first Fourier compo-

nents. We call the Mexican-hat interaction model 1. This model was studied previously. In

this paper, we give a derivation of the auxiliary equations for the phases and self-consistent

equations for the amplitudes, solve these equations, and derive the boundaries of the bistable

regions. We obtain three non-trivial solutions that are characterized by the order parameters

and the rotation numbers of the synchronized oscillators. We draw the phase diagram by

using formulae for the phase boundaries derived using the unstable Pendulum (Pn) solution.

We find that disappearance of coexistent regions between the U and S solutions and between

the Pn and S solutions is due to the unstable solution and the stable solution annihilating

each other. This is a new type of transition that does not exist in the Kuramoto model. We

also analytically derive the location-dependent distribution of the resultant frequencies and

entrained phases and validate the theoretical results by simulation, except for the chaotic

behavior of the desynchronized oscillators. Secondly, we treat a different interaction with

the m-th and n-th Fourier components, where m < n. We call this interaction model 2. We

find the m-th and n-th Spinning solutions, Sm and Sn, and a Pendulum solution, Pn. We

performed numerical simulations for the case of m = 1 and n = 2, and they confirmed the

theoretical results.

The structure of this paper is as follows. From §2 to §6, we study model 1. In §2, we

formulate the problem and describe the SCEs and auxiliary equations. The solutions of
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the auxiliary equations are also given. In §3, we characterize the non-trivial solutions by

introducing the rotation number. In §4, we give the SCEs for the non-trivial solutions. The

phase diagram and bifurcation structure are studied in §5. In §6, we show the results of

numerical simulations and compare them with the theoretical results. In §7, we study model

2 and show theoretical and numerical results for it. §8 contains a summary and discussion

of the results. In Appendix A, we derive the auxiliary equations and SCEs for model 1 and

solve the auxiliary equations. In Appendix B, we derive the SCEs and relevant quantities

for each phase. In Appendix C, we derive the condition for the existence of the Pn solution.

The expressions for the phase boundaries are derived in Appendix D. Appendix E derives

the SCEs for the Spinning and Pendulum solutions for model 2.

II. FORMULATION

Let us consider N equally spaced phase oscillators lying on a circle. We introduce the

coordinate θ on the circle, which takes values, 0, 2π
N
, 4π
N
, · · · , 2(N−1)π

N
. Let φθ be the phase

of the oscillator at the coordinate θ, and assume that it obeys the following differential

equation:

d

dt
φθ = ωθ +

∑
θ′

Jθ,θ′ sin(φθ′ − φθ). (1)

Here, ωθ is the natural frequency, and it is drawn from a probability density g(ω). g(ω) is

assumed to be one-humped at ω = ω0 and symmetric with respect to ω0. The interaction

Jθ,θ′ between oscillators at θ and θ′ is assumed to be

Jθ,θ′ =
J0
N

+
J1
N

cos(θ − θ′). (2)

This interaction has the properties of the Mexican-hat interaction described above. Now,

let us introduce three complex order parameters,

W = ReiΘ =
1

N

∑
θ

eiφθ , (3)

Wc = Rce
iΘc =

1

N

∑
θ

cos θeiφθ , (4)

Ws = Rse
iΘs =

1

N

∑
θ

sin θeiφθ . (5)
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By using these quantities, the evolution equation (1) can be rewritten as

d

dt
φθ = ωθ + J0R sin(Θ− φθ)

+J1[Rc cos θ sin(Θc − φθ) +Rs sin θ sin(Θs − φθ)]. (6)

Let us study the stationary states of this equation. Since oscillators with a natural frequency

ω0 are the most numerous, it is expected that the phases of the order parameters rotate with

the frequency ω0 in the stationary states. Thus, we will assume the following relations:

Θ = ω0t+Θ′, Θc = ω0t+Θ′
c, Θs = ω0t+Θ′

s.

Since we are studying stationary states, we will assume that the amplitudes R,Rc, Rs and

the phases Θ′,Θ′
c,Θ

′
s tend to constant values as t goes to infinity. We could assume ω0 = 0

without loss of generality. However, we will retain the term ω0 because the parameters at

critical points explicitly contain ω0.

Now, let us derive the SCEs following Kuramoto’s argument. We rewrite the right-hand

side of eq. (6) as

d

dt
φθ = ωθ − Aθ sin(φθ − ω0t− αθ). (7)

From eqs. (6) and (7), the following relation is derived:

Aθe
iαθ = J0Re

iΘ′
+ J1[Rc cos θe

iΘ′
c +Rs sin θe

iΘ′
s ]. (8)

For simplicity, we will omit primes from the phases except for the expressions of αθ ad φ
∗
θ.

Aθ is expressed as

A2
θ = (J0R)

2 + J2
1{(Rc cos θ)

2 + (Rs sin θ)
2

+2RcRs cos(Θc −Θs) sin θ cos θ}

+2J0J1R{Rc cos(Θc −Θ) cos θ +Rs cos(Θs −Θ) sin θ}. (9)

Since we assume that Θs and Rs do not depend on time, neither does αθ. Thus, by defining

ψθ ≡ φθ − ω0t− αθ, the evolution equation becomes

d

dt
ψθ = ωθ − ω0 − Aθ sinψθ. (10)
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A. Synchronized oscillators: |ωθ − ω0| ≤ Aθ

The stable and unstable solutions are as follows:

Stable solutions : 0 < ψθ <
π

2
for ωθ − ω0 > 0, and − π

2
< ψθ < 0 for ωθ − ω0 > 0,

Unstable solutions :
π

2
< ψθ < π for ωθ − ω0 > 0, and − π < ψθ < −π

2
for ωθ − ω0 > 0.

The entrained phase ψ∗
θ and number density of the synchronized oscillators with phase ψ at

the location θ, ns(θ, ψ), are obtained as

ψ∗
θ = sin−1

(
ωθ − ω0

Aθ

)
, (11)

ns(θ, ψ) = g(ω0 + Aθ sinψ)Aθ cosψ, |ψ| ≤
π

2
, (12)

where sin−1(x) is assumed to be the principal value and its range is [−π
2
,
π

2
].

B. Desynchronized oscillators: |ωθ − ω0| > Aθ

The solution of eq. (10) is

ψθ(t) = ω̃′
θt+ h(ω̃′

θt),

where h(t) is a periodic function of t with period 2π. ω̃′
θ is the resultant frequency given by

ω̃′
θ = (ωθ − ω0)

√
1−

(
Aθ

ωθ − ω0

)2

.

The solution of eq. (7) is

φθ(t) = ω0t+ ψθ(t) + αθ.

Therefore, the resultant frequency ω̃θ for φθ(t) is

ω̃θ = ω0 + ω̃′
θ = ω0 + (ωθ − ω0)

√
1−

(
Aθ

ωθ − ω0

)2

. (13)

The probability density function of the phase of desynchronized oscillators at location θ,

pds(θ, ψ), obeys the following equation:

∂

∂ψ

(
(ωθ − ω0 − Aθ sinψ)pds(θ, ψ)

)
= 0.
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Solving it yields

pds(θ, ψ) =
|ωθ − ω0|

2π

1

|ωθ − ω0 − Aθ sin(ψ)|

√
1−

(
Aθ

ωθ − ω0

)2

. (14)

From this, the number density of desynchronized oscillators with phase ψ at θ, nds(θ, ψ),

can be written as

nds(θ, ψ) =

∫
| Aθ
ω−ω0

|<1

g(ω)pds(θ, ψ)dω =
1

π

∫ ∞

Aθ

dx x g(ω0 + x)

√
x2 − A2

θ

x2 − A2
θ sin

2 ψ
. (15)

C. Resultant frequency distribution

We study the resultant frequency distribution for the synchronized and desynchronized

oscillators at θ, Gs(ω̃, θ) and Gds(ω̃, θ). Gs(ω̃, θ) is

Gs(ω̃, θ) =
Nθ,s

N
δ(ω̃ − ω0), (16)

where Nθ,sdθ is the number of synchronized oscillators located in (θ, θ+ dθ), and δ(x) is the

Dirac delta. Gds(ω̃, θ) is expressed as

Gds(ω̃, θ) =
|ω̃ − ω0|√

(ω̃ − ω0)2 + A2
θ

g(ω0 +
√

(ω̃ − ω0)2 + A2
θ). (17)

The following relation is used in the derivation:

ωθ = ω0 + (ω̃θ − ω0)

√
1 +

(
Aθ

ω̃θ − ω0

)2

. (18)

D. SCEs, Auxiliary equations and solutions of auxiliary equations

In this subsection, we state the SCEs, the auxiliary equations, and the solutions of the

auxiliary equations. Their derivations are in Appendix A.

Here, we will introduce the following notation:

〈B〉 ≡ 1

Z

1

π

∫ π/2

0

dψ

∫ 2π

0

dθg(ω0 + Aθ sinψ) cos
2 ψ B, (19)

Z ≡ 1

π

∫ π/2

0

dψ

∫ 2π

0

dθg(ω0 + Aθ sinψ) cos
2 ψ. (20)
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The SCEs are

R =

(
J0R + J1{Rc〈cos θ〉 cos(Θc −Θ) +Rs〈sin θ〉 cos(Θs −Θ)}

)
Z, (21)

Rc =

(
J0R〈cos θ〉 cos(Θc −Θ) + J1{Rc〈cos2 θ〉+Rs〈sin θ cos θ〉 cos(Θc −Θs)}

)
Z, (22)

Rs =

(
J0R〈sin θ〉 cos(Θs −Θ) + J1{Rc〈sin θ cos θ〉 cos(Θc −Θs) +Rs〈sin2 θ〉}

)
Z. (23)

The auxiliary equations are

Rc〈cos θ〉 sin(Θc −Θ) +Rs〈sin θ〉 sin(Θs −Θ) = 0, (24)

J0R〈cos θ〉 sin(Θc −Θ) + J1Rs〈sin θ cos θ〉 sin(Θc −Θs) = 0, (25)

J0R〈sin θ〉 sin(Θs −Θ)− J1Rc〈sin θ cos θ〉 sin(Θc −Θs) = 0. (26)

Two of the auxiliary equations are independent. Thus, the phases of the complex order

parameters are completely determined from the auxiliary equations. We list their solutions

below.

1. R = 0, R1 ≡
√
R2
c +R2

s 6= 0.

cos(Θc − Θs) = 0, that is, Θc − Θs = ±π
2
(mod 2π). This corresponds to the stable

Spinning (S) solution.

2. R 6= 0, R1 6= 0.

2-1 sin(Θc−Θs) = 0 and cos(Θc−Θ) = 0, that is, (Θc−Θ)× (Θs−Θ) = {±π
2
(mod

2π)} × {±π
2
(mod 2π)}. This corresponds to the stable Pendulum (Pn) solution.

2-2 sin(Θc−Θ) = 0 and cos(Θs−Θ) = 0, that is, (Θc−Θ)× (Θs−Θ) = {0, π (mod

2π)} × {±π
2
(mod 2π)}. This corresponds to the unstable Pn solution.

III. CHARACTERIZATION OF THE SOLUTIONS

The previous section determined the phases of the order parameters from the auxiliary

equations. Furthermore, Appendix B derives four solutions of the SCEs. These solutions
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are classified on the basis of the values of R and R1:

P: para magnetic solution, (R,R1) = (0, 0),

U: uniform solution, (R,R1) = (+, 0),

S: spinning solution, (R,R1) = (0,+), (Θc −Θs) = ±π
2
,

Pn: pendulum solution, (R,R1) = (+,+),

(Θc −Θ)× (Θs −Θ) = {±π
2
} × {±π

2
} : stable,

(Θc −Θ)× (Θs −Θ) = {0, π} × {±π
2
} : unstable.

Let us study the physical meanings of these solutions. In order to characterize them, we

will define the rotation number of a solution. Let us denote an oscillator at θ as XY spin

Xθ = (cosφθ, sinφθ) in the two dimensional space. We focus on the behavior of synchronized

oscillators with entrained phases φ∗
θ = ωt+ ψ∗

θ + αθ. The rotation number is the number of

rotations of a synchronized oscillator X∗
θ = (cosφ∗

θ, sinφ
∗
θ) around the origin in the space X

when the location θ changes by 2π. We define the rotation as being positive (negative) when

the rotation is anti-clockwise (clockwise). In the P solution, all oscillators desynchronize,

whereas in the other three solutions, an extensive number of oscillators synchronize and

their directions become locked. We depict θ dependencies of the entrained phase φ∗
θ for each

solution in Fig. 1. Although φ∗
θ fluctuates in all solutions, the behavior of φ∗

θ together with

the rotation number characterize each solution. In the U solution, φ∗
θ randomly takes on

a value in the interval [−π
2
+ Θ,

π

2
+ Θ] irrespective of the location of oscillators; hence,

the rotation number is 0. In the S solution, φ∗
θ linearly depends on θ, and the rotation

number is ±1. See Appendix B for the derivations of these solutions. In the Pn solution, φ∗
θ

has an oscillatory behavior and the rotation number is 0, but the directions of neighboring

synchronized oscillators are weakly correlated.

IV. SELF-CONSISTENT EQUATIONS FOR ORDERED SOLUTIONS

This section uses the same notation as in section 2; that is, Θs denote Θ′s. We give the

SCEs and relevant quantities of various solutions of the SCEs. The derivations are given in

Appendix B.
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FIG. 1. θ dependencies of entrained phase φ∗
θ. Line plots: theory; +: simulation (N = 10000, σ =

0.2, J0 = 1.2J0,c, ω0 = 0). Since ω0 is 0, the theoretical values are calculated by using eq. (11).

These values are connected by straight lines so that it is easier to compare them with the numerical

results. Only 1% of the entrained phases are depicted. (a) U solution, J1/J0 = 1.9, (b) S solution,

J1/J0 = 2.1, (c) Pn solution, J1/J0 = 2.1.

A. Stable U solution

In the U solution, R1 = 0. This is nothing but the solution of the Kuramoto model.

R = 2J0R

∫ π/2

0

dψg(ω0 + J0R sinψ) cos2 ψ, (27)

Aθ = J0R, αθ = Θ′ = constant,

φ∗
θ = ω0t+Θ′ + sin−1

(
ωθ − ω0

J0R

)
.

The phase transition point from the P phase to the U phase is

J0,c =
2

πg(ω0)
. (28)

B. Stable S solution

For the stable S solution, R = 0, 〈cos θ〉 = 〈sin θ〉 = 0, and Θc −Θs = ±π
2
.

Rc = J1Rc

∫ π/2

0

dψg(ω0 + J1Rc sinψ) cos
2 ψ. (29)

Rc = Rs =
R1√
2
, Aθ = J1Rc, αθ = Θ′

c ∓ θ,

φ∗
θ = ω0t+ sin−1

(
ωθ − ω0

J1Rc

)
+Θ′

c ∓ θ.

10



The phase transition point from the P phase to the S phase and the order parameter R1

near to the transition point are given by

J1,c =
4

g(ω0)π
= 2J0,c, (30)

R1 '
4

J2
1,c

√
2(J1 − J1,c)

π|g′′(ω0)|
∝

√
J1 − J1,c.

When g(ω) is a Gaussian distribution with mean ω0 and standard deviation σ, J0,c and

J1,cbecome

J0,c = 2

√
2

π
σ, J1,c = 4

√
2

π
σ = 2J0,c.

The entrained phase φ∗
θ linearly depends on θ. Since the resultant frequency distributions

for the synchronized and desynchronized oscillators do not depend on θ, we denote them by

Gs(ω̃) and Gds(ω̃), respectively:

Gs(ω̃) =
Ns

N
δ(ω̃ − ω0), (31)

Gds(ω̃) =
|ω̃ − ω0|√

(ω̃ − ω0)2 + (J1Rc)2
g(ω0 +

√
(ω̃ − ω0)2 + (J1Rc)2), (32)

where Ns is the number of synchronized oscillators.

C. Stable Pn solution

We define the phase ϕ of (Rc, Rs) as

Rc = R1 cosϕ, Rs = R1 sinϕ.

Furthermore, defining ᾱθ = αθ −Θc, we have

Aθ cos ᾱθ = J1R1 cos(θ − ϕ cos(Θc −Θs)), Aθ sin ᾱθ = −J0R sin(Θc −Θ),

Aθ =
√
(J0R)2 + (J1R1)2 cos2(θ − ϕ cos(Θc −Θs)), (33)

where sin(Θc−Θ) = ±1 and cos(Θc−Θs) = ±1. By transforming θ into θ′ = θ−ϕ cos(Θc−

Θs), the SCEs become

R =
4J0R

π

∫ π/2

0

dψ

∫ π/2

0

dθ′ g(ω0 + Aθ′+ϕ cos(Θc−Θs) sinψ) cos
2 ψ, (34)

R1 =
4J1R1

π

∫ π/2

0

dψ

∫ π/2

0

dθ′ g(ω0 + Aθ′+ϕ cos(Θc−Θs) sinψ) cos
2 ψ cos2 θ′, (35)

Aθ′+ϕ cos(Θc−Θs) =
√
(J0R)2 + (J1R1)2 cos2 θ′, (36)

φ∗
θ = ω0t+ αθ + sin−1

(
ωθ − ω0

Aθ

)
= ω0t+ ᾱθ +Θ′

c + sin−1

(
ωθ − ω0

Aθ

)
. (37)
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In the last equation, θ is the original coordinate and Aθ is given by eq. (33). From (37),

the rotation number is 0. Using this Aθ, the resultant frequency distributions Gs(ω̃, θ) and

Gds(ω̃, θ) are given by eqs. (16) and (17).

D. Unstable Pn solution

Setting ᾱθ = αθ −Θc, we have

Aθ sin ᾱθ = −J1Rs sin θ sin(Θc −Θs),

Aθ cos ᾱθ = J0R cos(Θc −Θ) + J1Rc cos θ,

Aθ =
√
(J0R cos(Θc −Θ) + J1Rc cos θ)2 + (J1Rs sin θ)2.

By transforming θ into θ′ = θ − (Θc −Θ), eqs. (21), (22), and (23) become

R =
2

π

∫ π/2

0

dψ

∫ π

0

dθ′g(ω0 + Aθ′+Θc−Θ sinψ) cos2 ψ (J0R + J1Rc cos θ
′), (38)

Rc =
2

π

∫ π/2

0

dψ

∫ π

0

dθ′g(ω0 + Aθ′+Θc−Θ sinψ) cos2 ψ (J0R + J1Rc cos θ
′) cos θ′, (39)

Rs = J1Rc
2

π

∫ π/2

0

dψ

∫ π

0

dθ′g(ω0 + Aθ′+Θc−Θ sinψ) cos2 ψ sin2 θ′, (40)

where Aθ′+Θc−Θ =
√

(J0R + J1Rc cos θ′)2 + (J1Rs sin θ′)2.

By numerically solving equations (34) and (35) for the stable Pn solution, we obtain the

U solution by putting R1 = 0 and the stable Pn solution by putting R1 6= 0. This is because

eq. (34) with R1 = 0 reduces to the SCE (27) for the U solution. A necessary condition to

obtain a stable Pn solution is J1 > 2J0. We prove this in Appendix C.

V. PHASE DIAGRAM AND BIFURCATION STRUCTURE

Figure 2(a) is the phase diagram in scaled parameter space (J0/σ, J1/σ). Here, σ is the

standard deviation of the Gaussian distribution g(ω) that was used in the simulations. The

diagram shows that the S and U solutions can coexist and the S and Pn solutions can coexist.

Figure 2(b) shows the J1/σ dependencies of the order parameters R and R1 with J0/σ fixed

to 4. From this figure, we can see that the Pn solution bifurcates from the U solution

continuously, as is proved in Appendix C. On the other hand, the S solution bifurcates
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FIG. 2. (a) Phase diagram in scaled parameter space. Plotted points represent simulation results

and curves represent theoretical results. The solid vertical line represents the parameters used to

depict Fig. 2(b). (b) Bifurcation diagram, J1/σ dependencies of the order parameters. J0/σ = 4.

Solid curves: stable solutions, dashed curves: unstable solutions, which have superscripts U, e.g.,

SU.

from the P solution at the critical value of J1/σ. Furthermore, the unstable Pn solution and

stable S solution merge and the stable S solution becomes unstable as J1/σ decreases, and the

unstable and stable Pn solutions merge and the stable Pn solution becomes unstable as J1/σ

increases. Therefore, the unstable Pn solution determines the boundary of the coexistent

regions of the S and U solutions and of the S and Pn solutions. Taking into account these

observations, we can derive the boundaries of the coexisting solutions by using the unstable

Pn solution and relevant stable solutions. The equations for the boundaries are derived in

Appendix D.

VI. NUMERICAL RESULTS

We performed numerical simulations using a Gaussian distribution with mean 0 and

standard deviation σ as g(ω). That is, ω0 = 0. If J0 or J1 is large in the calculation,

the discretization of
dφi
dt

by the Euler method,
φi(t+ h)− φi(t)

h
, becomes worse [6]. Since

the evolution equations with the same values of ω0/σ, J0/σ and J1/σ become identical by

changing the time scale from t to σt, we fix J0 or J1 and change σ when J0 or J1 is large.
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The Euler method had a time increment h = 0.1.

A. Phase diagram

Figure 2(a) depicts the theoretically and numerically obtained boundaries. The theoret-

ical results (the solid curves) are in good agreement with the simulation results (symbols).

Now, let us examine the physical meanings of the phase transitions by using the rotation

numbers of the solutions. There are five boundaries in the phase diagram shown in Fig.

2(a). The transition from the P to U phase takes place continuously at J0/σ = (J0/σ)c

for 0 ≤ J1/σ ≤ (J1/σ)c, and this is the same transition as in the Kuramoto model. The

transition from the P to S phase takes place continuously at J1/σ = (J1/σ)c ≡ 2(J0/σ)c for

0 ≤ J0/σ ≤ (J0/σ)c. In the P phase, there are no synchronized oscillators and the rotation

number is not defined. In the S phase, the rotation number is 1. The above illustrates that

a solution with a non-zero rotation number can appear from a solution in which the rotation

number is not defined. Another example of this occurs in model 2 (see section 8). That is,

the Sm solution with the rotation number ±m appears from the P solution when the m-th

Fourier component exists in the interaction. The transition from the U to Pn phase takes

place continuously at J1/σ = 2J0/σ for J0/σ ≥ (J0/σ)c and J1/σ ≥ (J1/σ)c. In this case,

the rotation number of the U and Pn phases is 0. This is reasonable because the transition is

continuous and synchronized oscillators exist in both phases. Although both solutions have

the same rotation number, 0, they are different. That is, as is shown in Figs. 1(a) and (c),

the directions of the two synchronized oscillators do not correlate in the U phase, but cor-

relate weakly in the Pn phase. Now, let us investigate the transitions at the bistable region

boundaries. As mentioned in the previous section, the stable S and unstable Pn solutions

merge and the stable S solution disappears at the boundary between the S and U solutions,

and the stable Pn and unstable Pn solutions merge and the stable Pn solution disappears

at the boundary between the S and Pn solutions. This is a new type of transition that does

not exist in the Kuramoto model. When the stable S solution with rotation number ±1 and

unstable Pn solution merge, these two solutions should have the same rotation number, ±1.

Likewise, when the stable Pn solution with rotation number 0 and the unstable Pn solution

merge, their rotation numbers should be 0. Thus, the rotation number of the unstable Pn

solution changes from ±1 to 0 as J1/σ increases. This is really the case, as evidenced by Fig.

14



3. When we calculated φ∗
θ for the unstable solution, we assumed Θc = 0,Θc − Θ = 0 and

Θs −Θ = π/2, and we fixed these values when values of J1/σ change, because these phases

take on discrete values and are considered to be continuous with respect to the system pa-

rameters. The reason why the rotation number can change as a system parameter changes

is as follows. Oscillators are discretely spread out on a circle and the difference between the

phases of the neighboring synchronized oscillators can become π. Since the phase difference

is defined in mod 2π, if it changes and takes on the value π, the rotation number will change

by ±1. The rotation number is not defined if there are neighboring synchronized oscillators

whose phases differ by π. However, this situation is very special. In most cases, it is defined

and can be used to classify solutions and get physical information on them.
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FIG. 3. Theoretical estimation of θ dependencies of phases φ∗
θ for unstable Pn solution. σ =

0.2, J0/σ = 4. The theoretical values are calculated using a similar equation to eq. (11) for the

unstable Pn solution, and these values are connected by straight lines. Only 1% of the phases are

depicted. (a) J1/σ = 6, near the boundary of the region in which the S and U phases coexist, (b)

J1/σ = 8, at the boundary of the region in which the S and U phases coexist, (c) J1/σ = 10 near

the boundary of the region in which the S and Pn phases coexist.

B. Spinning solution

Figures 4(a) and (b) plot the dependence of R1 and the distribution of the resultant

frequencies G(ω̃) on
σ

J1
. The location-dependent entrained phase φ∗

θ is in Fig. 1(b). It turns

out that the entrained phase depends linearly on θ in the S solution but takes on random
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values for the U solution (see Fig. 1(b)), as theoretically expected. All of the numerical

results agree quite well with the theoretical results.
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FIG. 4. (a) σ/J1 dependence of R1. σ/J1 = (σ/J1)c × i, i = 0.1, 0.2, , , 1.2. we fix J0 = 0 and

J1 = 1 and change σ. We set ω0 = 0. Dashed curve: theory. Symbols: simulation. N = 20000.

The sample average was taken over 20 initial configurations. Vertical lines are error bars. (b) The

distribution of the resultant frequencies G(ω̃) in the ordered phase, n = 100000. 1 sample. Solid

curve: theory. Symbols: simulation. J0 = 0, J1 = 1. σ/J1 = (σ/J1)c × 0.9.

C. Pendulum solution

Figure 5 displays the theoretical and simulated results of the J0 dependence of the order

parameters for J1 = 2.1J0. The theoretical and simulation results of the location dependent

resultant frequency distribution G(ω̃, θ) for different θ are in Fig. 6, and those of the θ

dependencies of the entrained phases φ∗
θ are in Fig. 1(c). The agreement between the

theoretical and numerical results is excellent. To investigate the desynchronized oscillators,

we constructed a Lorenz plot of the time series sin(φi(t)) for the Pn solution (Fig. 7).

The Lorenz plot is a mapping from the difference ∆tl = tl+1 − tl to ∆tl+1, where tl and

tl+1 are successive times that satisfy cos((φi(tl)) = 1 and cos(φi(tl+1)) = 1, respectively. As

shown in Fig. 7, the simulation results are scattered in the Lorenz plot. This indicates that

the trajectory of a desynchronized oscillator behaves chaotically even though theoretically

it is quasi-periodic. However, this is reasonable because synchronized and desynchronized

oscillators interact with other oscillators, and desynchronized oscillators are easily influenced
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FIG. 5. J0 dependencies of order parameters. J1 = 2.1J0. Curves: theory, symbols: simulation.

N = 20000, σ = 0.2. Averages are taken from 20 samples. Solid curve and +: R of Pn solution,

dashed curve and ×: R1 of Pn solution, dashed dotted curve and square: R1 of S solution. Vertical

lines are error bars. The error bars of almost all of the data are too small to see.
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FIG. 6. Theoretical and simulated results for the distribution G(ω̃, θ) of the resultant frequencies

for the Pn solution. Curve: theory,+: simulation (N = 100000, σ = 0.2, J1/J0 = 2.1, J0 = 1.2J0,c).

(a) θ = 0.05× 2π, (b) θ = 0.25× 2π.

by perturbations, whereas entrained oscillators are forced to lock to the fixed phases. As

is well known, quasi periodic motion with more than two dimensions generically becomes

chaotic through perturbation [28]. In most of our numerical results, e.g., those for the

resultant frequency distribution, the larger N is, the better the agreement between the
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FIG. 7. Lorenz plot of desynchronized oscillator in Pn solution. ×: theory; +: simulation (N =

10000, σ = 0.2, J1/J0 = 2.1, J0 = 1.2J0,c).

theoretical and numerical results becomes. These results suggest that the system behaves

quasi-periodically as N goes to infinity.

VII. SYSTEM WITH INTERACTION COMPOSED OF FIRST AND SECOND

FOURIER COMPONENTS

In this section, we study model 2, in which the interaction is given by

Jθ,θ′ =
1

N
[Jm cos{m(θ − θ′)}+ Jn cos{n(θ − θ′)}], (41)

where m and n are positive integers, and we assume that m < n. The order parameters are

defined as

Rkce
iΘkc =

1

N

∑
θ

cos(kθ)eiφθ , (42)

Rkse
iΘks =

1

N

∑
θ

sin(kθ)eiφθ . (43)

k is m or n. As usual, we assume that Rkc and Rks tend to be constant and Θkc →

ω0t + Θ′
kc,Θks → ω0t + Θ′

ks as t tends to ∞, and Θ′
kc and Θ′

kc are constant. The evolution

equation is given by

d

dt
φθ = ωθ − Aθ sin(φθ − ω0t− αθ),

Aθe
iαθ =

∑
k=m,n

Jk[Rkc cos(kθ)e
iΘ′

kc +Rks sin(kθ)e
iΘ′

ks ]. (44)
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Defining ψθ = φθ − ω0t− αθ, the evolution equation becomes

d

dt
ψθ = ωθ − ω0 − Aθ sinψθ. (45)

For later use, we define Rk and ϕk by Rkc+ iRks = Rke
ikϕk . In the next subsections, we give

the SCE for the stable Spinning and Pendulum solutions. The derivations are in Appendix

E.

In the below, for simplicity, we will omit primes from the phases except for the expressions

of αθ ad φ
∗
θ.

A. Spinning solution

We give the conditions and SCEs for the stable Spinning solution with Rm > 0 and Rn =

0. We denote the solution by Sm. The conditions on this solution are cos(Θmc − Θms) = 0

and cos(2mϕm) = 0. From this, Rmc = Rms =
1√
2
R1 and Aθ = JmRmc follow. The SCE is

1 = Jm

∫ π/2

0

dψg(ω0 + JmRmc sinψ) cos
2 ψ. (46)

This equation is the same as eq. (29) for the stable Spinning solution studied in model 1.

The critical point is given by

J (c)
m = J

(c)
1 =

4

πg(ω0)
= 2J

(c)
0 . (47)

That is, the critical point for Sm is the same as the one for the S solution in model 1. The

synchronized solution is expressed as

αθ = Θ′
c ∓mθ,

φ∗
θ = ω0t+ ψ∗

θ + αθ = ω0t+ sin−1

(
ωθ − ω0

JmRmc

)
+Θ′

c ∓mθ. (48)

The entrained phase of the solution changes by ±2πm when the location θ changes by 2π;

that is, its rotation number is ±m.

B. Pendulum solution

Here, we assume RmRn 6= 0. Moreover, for simplicity, we assume n 6= 3m. Accordingly,

the conditions on the stable Pn solution are

sin(Θmc −Θms) = 0, sin(Θnc −Θns) = 0, cos(Θnc −Θms) = 0. (49)
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Here, we define

θ̄k = ϕke
i(Θkc−Θks) = ϕk cos(Θkc −Θks), θ̃ = θ̄n − θ̄m, θ

′ = θ − θ̄m,

from which we obtain

Aθ = Aθ′+θ̄m =

√(
JmRm cos(mθ′)

)2
+
(
JnRn cos{n(θ′ − θ̃)}

)2
. (50)

By changing the variable from θ to θ′, the SCEs become

1 =
Jm
π

∫ π/2

0

dψ

∫ 2π

0

dθ′g(ω0 + Aθ′+θ̄m sinψ) cos2 ψ cos2(mθ′), (51)

1 =
Jn
π

∫ π/2

0

dψ

∫ 2π

0

dθ′g(ω0 + Aθ′+θ̄m sinψ) cos2 ψ cos2{n(θ′ − θ̃)}. (52)

Furthermore, we derive the condition

〈sin{2n(θ′ − θ̃)}〉 = 0. (53)

The sufficient condition for this is cos(2nθ̃) = 0 or sin(2nθ̃) = 0, and it determines the value

of θ̃ Setting ᾱθ = αθ −Θms, we obtain

Aθ cos ᾱθ = JmRm cos(Θmc −Θms) cos(mθ
′), (54)

Aθ sin ᾱθ = JnRn sin(Θnc −Θms) cos{n(θ′ − θ̃)}. (55)

Thus,

φ∗
θ = ω0t+ sin−1

(
ωθ − ω0

Aθ

)
+ ᾱθ +Θ′

ms. (56)

This formula indicates that the rotation number can take on values of 0,±1, · · · ,±m.

C. Numerical results

We performed numerical simulations in which we used a Gaussian distribution for g(ω).

We set the mean to be 0, i.e. ω0 = 0 and standard deviation σ. We studied the case

of m = 1 and n = 2. Figure 8 plots the time series of the amplitudes of the complex

order parameters for S1, S2, and Pn. The trajectories of the amplitudes of the complex

order parameters for S1 and S2 converge, but those for Pn fluctuate. Figure 9 shows the

time series of the phases of the complex order parameters and 4θ̃. Moreover, Figs. 10 and

11 respectively display the J2 dependence of the order parameters for J1 = J2 and the θ
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dependencies of the entrained phases φ∗
θ. The rotation numbers for the S1, S2, and Pn

solutions are -1, 2, and 0, respectively. The theoretical and numerical results agree quite

well. Figure 12 shows the resultant frequency distribution G(ω̃) of the S1 and S2 solutions,

and the location-dependent resultant frequency distribution G(ω̃, θ) for different θ of the Pn

solution. Agreement between numerical and theoretical results is excellent for the S1 and

S2 solutions. However, it is not close for the Pn solution. This is because the trajectories

of R1 and R2 for the Pn solution fluctuate, as shown in the Fig. 8(c). As can be seen from

Fig. 9, Θ1c − Θ1s = −π,Θ2c − Θ2s = 0,Θ2c − Θ1s = −π/2. Thus, θ̄1 = −ϕ1 and θ̄2 = ϕ2.

Therefore, 0 ≤ 4θ̃ ≤ 3π. Accordingly, the condition cos(4θ̃) = 0 implies 4θ̃ = π
2
, 3π

2
, 5π

2
. The

other condition sin(4θ̃) = 0 implies 4θ̃ = 0, π, 2π, 3π. However, numerical results shows that

4θ̃ ' 2.2π (Fig. 9(c)). This is the cause of the discrepancy between the theoretical and

numerical results for G(ω̃, θ).
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FIG. 8. Trajectories of R1 and R2. J1 = J2 = 1.2J1,c. N = 200000. Solid curve: R1, dashed curve:

R2. (a) S1 solution. (b) S2 solution. (c) Pn solution.

VIII. SUMMARY AND DISCUSSION

We studied phase oscillator networks on a circle with two types of interaction (models 1

and 2).

Model 1 is the Mexican-hat interaction. The interaction is composed of two terms, one of

which is a uniform interaction with strength J0, and the other is a sinusoidal interaction with

respect to the location θ of oscillators with strength J1. If J1 = 0, the present model reduces
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FIG. 9. Trajectories of ϕs and 4θ̃. J1 = J2 = 1.2J1,c. N = 200000. (a) S1 solution. Solid curve:

Θ1c − Θ1s, dashed curve: ϕ1. (b) S2 solution. Solid curve: Θ2c − Θ2s, dashed curve: ϕ2. (c) Pn

solution. Solid curve: Θ1c−Θ1s, dashed curve: Θ2c−Θ2s, dotted curve: Θ2c−Θ1s, dashed dotted

curve: 4θ̃.
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FIG. 10. J2 dependence of R1, R2. σ = 0.2. J1 = J2. J2/J2,c × i, i = 0.8, 0.2, , , 2.0. ω0 = 0.

Curves: theory. Symbols: simulation. N = 10000. The sample average was taken over 40 initial

configurations. Solid curve and +: R1 of Pn, dashed curve and ×: R2 of Pn, dashed-dotted curve:

R1 of S1 and R2 of S2, * : R1 of S1, square : R2 of S2. Vertical lines are error bars. The error bars

on almost all of the data are too small to see.

to the Kuramoto model. In order to obtain self-consistent equations, information about the

differences between the phases of the complex order parameters is necessary. Previously,

for this purpose, we studied the classical XY model to which the phase oscillator network

reduces when all oscillators have the same natural frequency [29, 30]. The relevant order
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FIG. 11. θ dependencies of entrained phases φ∗
θ. Line plots: theory;+: simulation. The theoretical

values are calculated using eq. (56) with ω0 = 0, and these values are connected by straight lines

so that it is easier to compare them with the numerical results. Only 1% of the entrained phases

are depicted. J1 = J2 = 1.8J1,c, σ = 0.2. Simulation: N = 10000. (a) S1 solution. (b) S2 solution.

(c) Pn solution.

parameters are the same in the oscillator network and XY model. The order parameters that

characterize the solutions areR andR1. The saddle point equations (SPEs) for the XYmodel

were obtained and the differences between the phases of the complex order parameters were

determined analytically [30]. So far, we have used information on the phases of the complex

order parameters in the XY model to solve the SCEs for the phase oscillator network.

Recently, we succeeded in deriving auxiliary equations that determine the phases of the

order parameters for the phase oscillator network. The auxiliary equations turned out to

be the same as the SPEs for the phases of the complex order parameters in the XY model

[26]. In this paper, we gave detailed derivations of the relevant equations and quantities. We

derived two auxiliary equations by expressing the order parameters in terms of the number

density of the oscillators. We used them to analytically determine the phases of the order

parameters, derived self-consistent equations for their amplitudes, and obtained three non-

trivial solutions that are characterized by the order parameters and the rotation numbers

of the synchronized oscillators X∗
θs. We drew the phase diagram by using formulae for the

phase boundaries derived using the unstable Pn solution. Furthermore, we found that the

disappearance of coexistent regions between the U and S solutions and between the Pn and

S solutions is due to annihilation of the unstable Pn and stable S solutions, and that of

the unstable and stable Pn solutions. This is a new type of transition that does not exist
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FIG. 12. Theoretical and simulated results for the distribution of the resultant frequencies. G(ω̃)

for the S1 and S2 solutions and G(ω̃, θ) for the Pn solution. Curve: theory, +: simulation (N =

200000, σ = 0.01, J1 = J2 = 1.2J1,c). (a) S1 solution, (b) S2 solution, (c) θ = 0.05 × 2π for Pn

solution , (d) θ = 0.25× 2π for Pn solution.

in the Kuramoto model. We also analytically obtained the location-dependent distribution

of the resultant frequencies and entrained phases and validated the theoretical results by

simulation, except for the chaotic behavior of the desynchronized oscillators. This chaotic

behavior is quite reasonable because quasi periodic motion with more than two dimensions

generically becomes chaotic through perturbation [28]. Our numerical results suggest that

the system behaves quasi-periodically as N goes to infinity.

Model 2 is an interaction including them-th and n-th Fourier components, wherem < n. We

found Spinning solutions, Sm and Sn, and a Pendulum solution. The critical points for the
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Sm and Sn solutions are the same as those for the S solution in model 1. In Sm (Sn), the phase

of the entrained oscillators changes by ±2mπ (±2nπ) when the location changes by 2π. That

is, the rotation number is ±m (±n). On the other hand, in the Pendulum solution, the phase

of the entrained oscillators fluctuates when location changes by 2π, and the rotation number

can take on values of 0,±1,±2, · · · ,±m. We performed a similar analysis to that of model

1 for m = 1 and n = 2. In the J1, J2 space, around the line J1 = J2, these three solutions

coexist for J1 > J1,c and J2 > J2,c. We conducted a simulation that validated the theoretical

results for the J2 dependencies of R1 and R2 and the dependencies of the entrained phases

on location. As for the distribution of the resultant frequencies, the agreement between

the theoretical and numerical results was excellent for the S1 and S2 solutions. However,

theoretical and numerical results for the location-dependent distribution of the resultant

frequencies did not agree very well for the Pn solution. This is because the trajectories of

R1 and R2 for the Pn solution fluctuate, and the numerical value of θ̃ deviates from the

theoretical prediction. The reason for this deviation seems to be that the desynchronized

oscillators behave more chaotically in the Pn solution than in the S1 and S2 solutions.

How the existing phases and phase transitions depend on the type of interaction is an

interesting question. The present method is applicable to phase oscillator networks not only

on a circle but also in general spaces. For example, we have started to study an oscillator

network and XY model in which the interaction is like that of associative memory, and we

have found that there are different phases and phase transitions from those in the Mexican-

hat interaction.
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IX. APPENDIX A. DERIVATION OF AUXILIARY EQUATIONS AND SCES,

AND SOLUTIONS OF AUXILIARY EQUATIONS

The total number density of oscillators with phase ψ at location θ, n(θ, ψ), is n(θ, ψ) =

ns(θ, ψ) + nds(θ, ψ). From eq.(15), since nds(θ, ψ + π) = nds(θ, ψ),
∫ 2π

0
nds(θ, ψ)e

iψdψ = 0

follows. Thus, only synchronized oscillators contribute to the order parameters:

ReiΘ =

∫ π

−π
dψns(ψ)e

iψ+iαθ , (57)

Rce
iΘc =

∫ π

−π
dψ

1

2π

∫ 2π

0

dθns(θ, ψ) cos θe
iψ+iαθ , (58)

Rse
iΘs =

∫ π

−π
dψ

1

2π

∫ 2π

0

dθns(θ, ψ) sin θe
iψ+iαθ , (59)

where

ns(ψ) =
1

2π

∫ 2π

0

dθns(θ, ψ).

By substituting the expression of ns(θ, ψ) into eq. (57), we obtain the following equations.

R =
1

π

∫ π/2

0

dψ

∫ 2π

0

dθg(ω0 + Aθ sinψ) cos
2 ψ

×{J0R + J1(Rc cos θe
i(Θc−Θ) +Rs sin θe

i(Θs−Θ))}. (60)

Aθ is expressed as

A2
θ = (J0R)

2 + J2
1{(Rc cos θ)

2 + (Rs sin θ)
2

+2RcRs cos(Θc −Θs) sin θ cos θ}

+2J0J1R{Rc cos(Θc −Θ) cos θ +Rs cos(Θs −Θ) sin θ}.

27



We introduce the following notation.

〈B〉 ≡ 1

Z

∫ π/2

0

dψ

∫ 2π

0

dθg(ω0 + Aθ sinψ) cos
2 ψ B, (61)

Z ≡
∫ π/2

0

dψ

∫ 2π

0

dθg(ω0 + Aθ sinψ) cos
2 ψ. (62)

Equation (60) can be rewritten as

R =

(
J0R + J1{Rce

i(Θc−Θ)〈cos θ〉+Rse
i(Θs−Θ)〈sin θ〉}

)
Z. (63)

Similarly, eqs. (58), and (59) can be rewritten as

Rc =

(
J0Re

−i(Θc−Θ)〈cos θ〉+ J1{Rc〈cos2 θ〉+Rse
−i(Θc−Θs)〈sin θ cos θ〉}

)
Z, (64)

Rs =

(
J0Re

−i(Θs−Θ)〈sin θ〉+ J1{Rce
i(Θc−Θs)〈sin θ cos θ〉+Rs〈sin2 θ〉}

)
Z. (65)

The real parts of eqs. (63), (64), and (65) give the SCEs for R,Rc, and Rs.

R =

(
J0R + J1{Rc〈cos θ〉 cos(Θc −Θ) +Rs〈sin θ〉 cos(Θs −Θ)}

)
Z, (66)

Rc =

(
J0R〈cos θ〉 cos(Θc −Θ) + J1{Rc〈cos2 θ〉+Rs〈sin θ cos θ〉 cos(Θc −Θs)}

)
Z, (67)

Rs =

(
J0R〈sin θ〉 cos(Θs −Θ) + J1{Rc〈sin θ cos θ〉 cos(Θc −Θs) +Rs〈sin2 θ〉}

)
Z. (68)

The imaginary parts of eqs. (63), (64), and (65) give three equations.

Rc〈cos θ〉 sin(Θc −Θ) +Rs〈sin θ〉 sin(Θs −Θ) = 0, (69)

J0R〈cos θ〉 sin(Θc −Θ) + J1Rs〈sin θ cos θ〉 sin(Θc −Θs) = 0, (70)

J0R〈sin θ〉 sin(Θs −Θ)− J1Rc〈sin θ cos θ〉 sin(Θc −Θs) = 0. (71)

Two of eqs. (69), (70), and (71) are independent. These auxiliary equations completely

determine the phases of the order parameters.

Now, let us solve the auxiliary equations. We will concentrate on the solutions that are

relevant to the phase transitions. Firstly, we solve the case of R = 0 and R1 =
√
R2
c +R2

s 6= 0

and derive the phases of the order parameters for the stable S solution.

Case of R = 0, R1 6= 0.

Since Aθ does not have cos θ and sin θ terms, 〈cos θ〉 = 〈sin θ〉 = 0 follows. Thus, from eqs

(70) and (71), we obtain

J1Rs〈sin θ cos θ〉 sin(Θc −Θs) = 0, (72)

J1Rc〈sin θ cos θ〉 sin(Θc −Θs) = 0. (73)
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Therefore, we have

〈sin θ cos θ〉 sin(Θc −Θs) = 0.

The case of sin(Θc −Θs) = 0 gives an irrelevant solution, so we will omit discussion of this

case.

Now let us study the case 〈sin θ cos θ〉 = 0. Here, the Fourier expansion of the integrand

should not contain the Fourier component sin θ cos θ. Therefore, the coefficient of sin θ cos θ

in Aθ should be 0, that is, RcRs cos(Θc − Θs) = 0. Thus, cos(Θc − Θs) = 0, or Rc = 0,

or Rs = 0. Rc = 0 or Rs = 0 gives irrelevant solutions, and the relevant solution is when

cos(Θc − Θs) = 0, that is, Θc − Θs = ±π
2

(mod 2π). Hereafter, we omit ‘(mod 2π)’ for

simplicity. Numerical results show that this case corresponds to the stable S solution.

Next, we solve the case of R 6= 0, Rc 6= 0, Rs 6= 0 and derive the phases of the order

parameters for the Pn solutions.

Case of R 6= 0, Rc 6= 0, Rs 6= 0.

Using eq. (70) and Θs −Θ = (Θc −Θ)− (Θc −Θs) and multiplying eq. (71) by 〈cos θ〉,

we obtain

sin(Θc −Θs)[J1Rs〈sin θ cos θ〉〈sin θ〉 cos(Θc −Θs)

+〈cos θ〉{J0R〈sin θ〉 cos(Θc −Θ) + J1Rc〈sin θ cos θ〉}] = 0.

(74)

Case 1 sin(Θc −Θs) = 0, that is, Θc −Θs = {0, π}.

From eq. (70), we obtain

J0R〈cos θ〉 sin(Θc −Θ) = 0.

Thus, Θc − Θ = {0, π} or 〈cos θ〉 = 0 follows. The relevant solution is obtained from the

case 〈cos θ〉 = 0. In this case, Aθ should not contain any cos θ term, that is, RRc cos(Θc −

Θ)〈sin θ cos θ〉 = 0. Therefore, cos(Θc − Θ) = 0, i.e., Θc − Θ = ±π
2
. Since Θs − Θ =

(Θc −Θ)− (Θc −Θs) = ±π
2
, we obtain

(Θc −Θ)× (Θs −Θ) = {±π
2
} × {±π

2
}

Numerical results show that this is the stable Pn solution.
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Using eq. (69) and Θc −Θs = (Θc −Θ)− (Θs −Θ) and multiplying eq. (70) by 〈sin θ〉,

we obtain

sin(Θc −Θ)[〈sin θ〉{J0R〈cos θ〉+ J1Rs〈sin θ cos θ〉 cos(Θs −Θ)}

+J1Rc〈sin θ cos θ〉〈cos θ〉 cos(Θc −Θ)] = 0. (75)

Case 2 sin(Θc −Θ) = 0, that is, Θc −Θ = {0, π}

From eq. (69), Rs〈sin θ〉 sin(Θs − Θ) = 0. Thus, Θs − Θ = {0, π}, or 〈sin θ〉 = 0. The

relevant solution is obtained from 〈sin θ〉 = 0. In this case, RRs cos(Θs − Θ) should be 0.

Therefore, cos(Θs −Θ) = 0, that is, Θs −Θ = ±π
2
. Thus, we obtain

(Θc −Θ)× (Θs −Θ) = {0, π} × {±π
2
}.

It turns out that this Pn solution is unstable.

Using eq. (69) and Θc −Θs = (Θc −Θ)− (Θs −Θ) and multiplying eq. (71) by 〈cos θ〉,

we obtain

sin(Θs −Θ)[〈cos θ〉{J0R〈sin θ〉+ J1Rc〈sin θ cos θ〉 cos(Θc −Θ)}

+J1Rs〈sin θ cos θ〉〈sin θ〉 cos(Θs −Θ)] = 0. (76)

Case 3 sin(Θs −Θ) = 0, that is, Θs −Θ = {0, π}

In this case, from eq.(69), we have

Rc〈cos θ〉 sin(Θc −Θ) = 0.

It follows that Θc −Θ = {0, π}, or 〈cos θ〉 = 0.

Case 3-1. sin(Θc −Θ) = 0.

Moreover, it follows that (Θc −Θ)× (Θs −Θ) = {0, π} × {0, π}.

These solutions are unstable and irrelevant.

Case 3-2. 〈cos θ〉 = 0.

In this case, RRc cos(Θc − Θ) should be 0. Thus, cos(Θc − Θ) = 0, and Θc − Θ = ±π
2
.

Therefore, we have (Θc −Θ)× (Θs −Θ) = {±π
2
} × {0, π}. These solutions are unstable.

Other cases
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The other conditions for (74), (75), and (76) are

J1Rs〈sin θ cos θ〉〈sin θ〉 cos(Θc −Θs) + 〈cos θ〉{J0R〈sin θ〉 cos(Θc −Θ)

+J1Rc〈sin θ cos θ〉} = 0, (77)

〈sin θ〉{J0R〈cos θ〉+ J1Rs〈sin θ cos θ〉 cos(Θs −Θ)}

+J1Rc〈sin θ cos θ〉〈cos θ〉 cos(Θc −Θ) = 0, (78)

〈cos θ〉{J0R〈sin θ〉+ J1Rc〈sin θ cos θ〉 cos(Θc −Θ)}

+J1Rs〈sin θ cos θ〉〈sin θ〉 cos(Θs −Θ) = 0. (79)

Since R,Rc and Rs are continuous functions with respect to the parameters J0 and J1, the

conditions under which the above equalities hold are that the coefficients of R,Rc, Rs are 0.

The conditions for 〈cos θ〉 = 0 and for cos(Θc − Θ) = 0 are the same, and Θc − Θ = ±π
2
.

Similarly, the condition for 〈sin θ〉 = 0 and for cos(Θs − Θ) = 0 is Θs − Θ = ±π
2
, and the

condition for 〈sin θ cos θ〉 = 0 and for cos(Θc −Θs) = 0 is Θc −Θs = ±π
2
. The combination

of phases of the order parameters are the same as those in cases 1 to 3.

X. APPENDIX B. DERIVATION OF CONCRETE SCES AND RELEVANT QUAN-

TITIES FOR EACH PHASE

A. Stable Uniform solution

This is the case of R > 0 and R1 = 0. This is nothing but the solution of the Kuramoto

model. Since R1 = 0, we have

Aθe
iαθ = J0Re

iΘ, Aθ = J0R, αθ = Θ′ = constant.

Therefore, the entrained phase φ∗
θ is expressed as

φ∗
θ = ω0t+Θ′ + sin−1

(
ωθ − ω0

J0R

)
.

Note that Θ′ = Θ− ω0t is used in the expressions of αθ ad φ
∗
θ. The SCE is

R = 2J0R

∫ π/2

0

dψg(ω0 + J0R sinψ) cos2 ψ. (80)

The phase transition point from the P phase to the U phase is

J0,c =
2

πg(ω0)
. (81)
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B. Stable S solution

For the stable S solution, R = 0, 〈cos θ〉 = 〈sin θ〉 = 0 and Θc −Θs = ±π
2
(see Appendix

A). In this case, Aθ is expressed as Aθ = J1
√

(Rc cos θ)2 + (Rs sin θ)2. From eqs. (67) and

(68), we have

Rc = J1Rc〈cos2 θ〉Z, Rs = J1Rs〈sin2 θ〉Z.

If RcRs 6= 0, then 〈cos2 θ〉 = 〈sin2 θ〉 holds. Rc = Rs =
R1√
2
follows from this. Accordingly,

Aθ = J1Rc, and the SCE becomes

Rc = J1Rc

∫ π/2

0

dψg(ω0 + J1Rc sinψ) cos
2 ψ. (82)

The phase transition point from the P phase to the S phase and the order parameter R1

near to the transition point are given by

J1,c =
4

g(ω0)π
= 2J0,c, R1 '

4

J2
1,c

√
2(J1 − J1,c)

π|g′′(ω0)|
∝

√
J1 − J1,c.

When g(ω) is a Gaussian distribution with mean ω0 and standard deviation σ, J0,c and J1,c

are given by

J0,c = 2

√
2

π
σ, J1,c = 4

√
2

π
σ = 2J0,c. (83)

Let us study the entrained phase φ∗
θ = ω0t+ψ

∗
θ +αθ. Since Θc−Θs = ±π

2
, Θs = Θc− (Θc−

Θs) = Θc ∓ π
2
. From eq. (8), we have

Aθe
iαθ = J1Rce

iΘc(cos θ + sin θe∓i
π
2 ) = J1Rce

i(Θc∓θ). (84)

Therefore, Aθ = J1Rc and αθ = Θ′
c ∓ θ. Accordingly, the entrained phase φ∗

θ is

φ∗
θ = ω0t+ ψ∗

θ + αθ = ω0t+ sin−1

(
ωθ − ω0

J1Rc

)
+Θ′

c ∓ θ. (85)

Thus, the entrained phase φ∗
θ linearly depends on the location θ.

C. Stable Pn solution

Since (Θc −Θ)× (Θs −Θ) = {±π
2
} × {±π

2
}, by using sin(Θc −Θ) = ±1, cos(Θc −Θ) =

0, cos(Θc −Θs) = ±1 and sin(Θc −Θs) = 0, the eq. (8) reduces to

Aθe
iαθ = J0Re

i(Θc−(Θc−Θ)) + J1R1e
iΘc cos{θ − ϕ cos(Θc −Θs)}, (86)
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where we have defined

Rc = R1 cosϕ, Rs = R1 sinϕ.

Therefore, setting ᾱθ = αθ −Θc, we have

Aθ sin ᾱθ = −J0R sin(Θc −Θ), Aθ cos ᾱθ = J1R1 cos{θ − ϕ cos(Θc −Θs)},

Aθ =
√
(J0R)2 + (J1R1)2 cos2{θ − ϕ cos(Θc −Θs)}. (87)

Equations (66), (67), and (68) become

R = J0RZ, (88)

Rc = J1R1Z〈cos2{θ − ϕ cos(Θc −Θs)}〉 cosϕ, (89)

Rs = J1R1Z〈cos2{θ − ϕ cos(Θc −Θs)}〉 sinϕ. (90)

By transforming θ into θ′ = θ − ϕ cos(Θc − Θs) and since Aθ′+ϕ cos(Θc−Θs) is periodic with

period π and an even function of θ′, we obtain the following SCEs:

R =
4J0R

π

∫ π/2

0

dψ

∫ π/2

0

dθ′ g(ω0 + Aθ′+ϕ cos(Θc−Θs) sinψ) cos
2 ψ, (91)

R1 =
4J1R1

π

∫ π/2

0

dψ

∫ π/2

0

dθ′ g(ω0 + Aθ′+ϕ cos(Θc−Θs) sinψ) cos
2 ψ cos2 θ′, (92)

Aθ′+ϕ cos(Θc−Θs) =
√
(J0R)2 + (J1R1)2 cos2 θ′. (93)

In this solution, we have

φ∗
θ = ω0t+ αθ + sin−1

(
ωθ − ω0

Aθ

)
= ω0t+ ᾱθ +Θ′

c + sin−1

(
ωθ − ω0

Aθ

)
, (94)

where θ is the original coordinate and Aθ is given by eq. (87).

D. Unstable Pn solution

Since (Θc − Θ) × (Θs − Θ) = {0, π} × {±π
2
}, then sin(Θc − Θ) = 0, cos(Θc − Θ) =

±1, sin(Θs−Θ) = ±1, cos(Θs−Θ) = 0, sin(Θc−Θs) = ±1, and cos(Θc−Θs) = 0. Equation

(8) reduces to

Aθe
iαθ = eiΘc [J0Re

−i(Θc−Θ) + J1Rc cos θ − iJ1Rs sin θ sin(Θc −Θs)].
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Therefore, setting ᾱθ = αθ −Θc, we have

Aθ sin ᾱθ = −J1Rs sin θ sin(Θc −Θs),

Aθ cos ᾱθ = J0R cos(Θc −Θ) + J1Rc cos θ,

Aθ =
√
(J0R cos(Θc −Θ) + J1Rc cos θ)2 + (J1Rs sin θ)2

=
√
(J0R + J1Rc cos{θ − (Θc −Θ)})2 + (J1Rs sin{θ − (Θc −Θ)})2. (95)

Accordingly, eqs. (66), (67), and (68) become

R = 〈J0R + J1Rc cos{θ − (Θc −Θ)}〉Z, (96)

Rc = 〈(J0R + J1Rc cos{θ − (Θc −Θ)}) cos{θ − (Θc −Θ)}〉Z, (97)

Rs = 〈J1Rs sin
2{θ − (Θc −Θ)}〉Z. (98)

By transforming θ into θ′ = θ − (Θc −Θ) and since Aθ′+Θc−Θ is periodic with period π and

an even function of θ′, eqs. (96),(97), eq. (98) can be expressed as

R =
2

π

∫ π/2

0

dψ

∫ π

0

dθ′g(ω0 + Aθ′+Θc−Θ sinψ) cos2 ψ (J0R + J1Rc cos θ
′), (99)

Rc =
2

π

∫ π/2

0

dψ

∫ π

0

dθ′g(ω0 + Aθ′+Θc−Θ sinψ) cos2 ψ (J0R + J1Rc cos θ
′) cos θ′, (100)

Rs = J1Rc
2

π

∫ π/2

0

dψ

∫ π

0

dθ′g(ω0 + Aθ′+Θc−Θ sinψ) cos2 ψ sin2 θ′, (101)

where Aθ′+Θc−Θ =
√

(J0R + J1Rc cos θ′)2 + (J1Rs sin θ′)2.

XI. APPENDIX C. CONDITION ON THE EXISTENCE OF THE PN SOLUTION,

J1 > 2J0

Let us consider a bifurcation from a solution with R > 0 and R1 = 0 to a solution with

R > 0 and R1 > 0. Let us define X(R) and Y (R) as follows:

X(R) ≡ 2

π

∫ π/2

0

dψg(ω0 + J0R sinψ) cos2 ψ, (102)

Y (R) ≡ − 2

π

∫ π/2

0

dψg′(ω0 + J0R sinψ) sinψ cos2 ψ. (103)

X(R) > 0 follows from eq. (102), since we assumed R > 0. Integrating the right-hand side

of eq. (103) by parts yields

Y (R) = −2J0R

3π

∫ π/2

0

dψg′′(ω0 + J0R sinψ) cos4 ψ. (104)
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Here, we assume that g′′(x) exists. Note that g′(ω0) = 0 by definition. Since ω0 is the unique

maximum of g(ω), g′′(ω) ≤ 0 follows. Thus, Y (R) > 0 since R > 0. Defining ε ≡ J1R1

J0R
, for

ε� 1, from eqs. (91) and (92), we obtain

R ' 2J0R
(π
2
X − π

8
J0Rε

2Y
)
, (105)

R1 ' 2J1R1

(
X
π

4
− 3π

16
J0Rε

2Y

)
. (106)

When ε = 0, R1 = 0. Let us set R = R∗ at ε = 0. Then, from eq. (105), we obtain

1 = πJ0X(R∗). (107)

Thus, R∗ satisfies eq. (80) for the U solution. Furthermore, from eq. (106), we obtain

R1 ' 2

√
R∗(J1 − 2J0)

3πJ3
1Y (R∗)

. (108)

Since Y (R∗) > 0, we find that the Pn solution bifurcates from the U solution at J1 = 2J0

and exists when J1 > 2J0.

XII. APPENDIX D. DERIVATIONS OF THE PHASE BOUNDARIES

A. Boundaries between the S and U phases

We will analyze the SCEs for the unstable Pn solutions (99), (100), and (101) and derive

the boundary between the S and U phases. Assuming R � 1, we can expand Aθ′+Θc−Θ into

a Taylor series up to O(R).

J1Ā(θ
′) ≡ Aθ′+Θc−Θ ' J1Ā0(θ

′) +
J0Rc cos θ

′

Ā0(θ′)
R,

Ā0(θ
′) =

√
(Rc cos θ′)2 + (Rs sin θ′)2.

Thus, we obtain

g(ω0 + J1Ā(θ
′) sinψ) ' g(ω0 + J1Ā0(θ

′) sinψ)

+g′(ω0 + J1Ā0(θ
′) sinψ)

J0Rc cos θ
′

Ā0(θ′)
R sinψ.
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The SCEs become

R ' J0RZ0 + J1Rc〈cos θ′〉Z, (109)

Rc ' J0R〈cos θ′〉0Z0 + J1Rc〈cos2 θ′〉Z, (110)

Rs ' J1Rs〈sin2 θ′〉Z, (111)

〈B〉0 ≡
1

Z0

2

π

∫ π/2

0

dψ cos2 ψ

∫ π

0

dθ′g(ω0 + J1Ā0(θ
′) sinψ)B, (112)

Z0 ≡
2

π

∫ π/2

0

dψ cos2 ψ

∫ π

0

dθ′g(ω0 + J1Ā0(θ
′) sinψ). (113)

〈cos θ′〉0 = 0 holds, and by putting R = 0, eqs. (110) and (111) lead us to 〈cos2 θ′〉0 =

〈sin2 θ′〉0. Thus, Rc = Rs is satisfied on the boundary. Therefore, we have

Ā0(θ
′) = Rc =

R1√
2
,

Ā(θ′) ' J1Rc + J0R cos θ′,

〈B〉0 =
1

Z0

2

π

∫ π/2

0

dψ cos2 ψg(ω0 + J1Rc sinψ)

∫ π

0

dθ′B,

Z0 = 2

∫ π/2

0

dψ cos2 ψg(ω0 + J1Rc sinψ).

Thus, we obtain

〈cos θ′〉 ' 1

Z

2

π

∫ π/2

0

dψ cos2 ψ

×
∫ π

0

dθ′
(
g(ω0 + J1Rc sinψ) + g′(ω0 + J1Rc sinψ)J0R cos θ′ sinψ

)
cos θ′

=
1

Z
J0R

∫ π/2

0

dψ cos2 ψg′(ω0 + J1Rc sinψ) sinψ.

Equation (109) becomes

R ' 2J0R

∫ π/2

0

dψ cos2 ψg(ω0 + J1Rc sinψ)

+J0J1RRc

∫ π/2

0

dψ cos2 ψg′(ω0 + J1Rc sinψ) sinψ. (114)

Thus, on the boundary, we have

1 = 2J0

∫ π/2

0

dψ cos2 ψg(ω0 + J1Rc sinψ)

+J0J1Rc

∫ π/2

0

dψ cos2 ψg′(ω0 + J1Rc sinψ) sinψ. (115)
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On the other hand, on the boundary, eq. (110) becomes

Rc = J1Rc〈cos2 θ′〉0Z0 = J1Rc

∫ π/2

0

dψ cos2 ψg(ω0 + J1Rc sinψ). (116)

This is nothing but the SCE (82) for the stable S solution. Therefore, eq. (115) becomes

1 = 2
J0
J1

+ J0J1Rc

∫ π/2

0

dψ cos2 ψg′(ω0 + J1Rc sinψ) sinψ. (117)

This can be rewritten as

J0 = [
2

J1
+ J1Rc

∫ π/2

0

dψg′(ω0 + J1Rc sinψ) cos
2 ψ sinψ]−1, (118)

which is the formula of the boundary between the S and U phases. We define ĝ(x) ≡

σg(ω0 + σx), and consequently, ĝ′(x) = σ2g′(ω0 + σx) follows. Defining J̄i =
Ji
σ
, we can

rewrite eqs. (116) and (118) as

Rc = J̄1Rc

∫ π/2

0

dψ cos2 ψĝ(J̄1Rc sinψ), (119)

J̄0 = [
2

J̄1
+ J̄1Rc

∫ π/2

0

dψĝ′(J̄1Rc sinψ) cos
2 ψ sinψ]−1. (120)

If g(ω) is a Gaussian distribution with mean ω0 and standard deviation σ, we have

ĝ(x) =
1√
2π
e−x

2/2, ĝ′(x) = −x 1√
2π
e−x

2/2.

B. Boundary between S and Pn phases

The boundary between S and Pn phases is obtained from the SCEs for the unstable Pn

solution by putting Rc = 0. Assuming Rc � 1, we can expand Ā(θ′) into a Taylor series up

to O(Rc). Defining Â(θ
′) = J1Ā(θ

′)/σ, we obtain

Â(θ′) =
√
(J̄0R + J̄1Rc cos θ′)2 + (J̄1Rs sin θ′)2

' Â0(θ
′) +

J̄0J̄1RRc cos θ
′

Â0(θ′)
,

Â0(θ
′) =

√
(J̄0R)2 + (J̄1Rs sin θ′)2.

Accordingly, we have

g(ω0 + J1Ā(θ
′) sinψ) ' g(ω0 + σÂ0(θ

′) sinψ)

+g′(ω0 + σÂ0(θ
′) sinψ)

J̄0J̄1RRc cos θ
′

Â0(θ′)
σ sinψ.
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The SCE (100) for Rc becomes

Rc '
2

π

∫ π/2

0

dψ cos2 ψ

∫ π

0

dθ′
(
ĝ(Â0(θ

′) sinψ)J̄1Rc

+ĝ′(Â0(θ
′) sinψ)

(J̄0R)
2J̄1Rc

Â0(θ′)
sinψ

)
cos2 θ′. (121)

Thus, the boundary between the S and Pn phases is given by

1 =
2

π
J̄1

∫ π/2

0

dψ cos2 ψ

∫ π

0

dθ′
(
ĝ(Â0(θ

′) sinψ)

+ĝ′(Â0(θ
′) sinψ)

(J̄0R)
2

Â0(θ′)
sinψ

)
cos2 θ′. (122)

On the other hand, on the boundary, the SCEs (99) and (101) for R and Rs become

R = σJ̄0R
2

π

∫ π/2

0

dψ cos2 ψ

∫ π

0

dθ′g(ω0 + σÂ0(θ
′) sinψ), (123)

Rs = σJ̄1Rs
2

π

∫ π/2

0

dψ cos2 ψ

∫ π

0

dθ′g(ω0 + σÂ0(θ
′) sinψ) sin2 θ′. (124)

Since Rc = 0 on the boundary, R1 = Rs holds. Furthermore, since the integrand is symmetric

with respect to θ′ =
π

2
, changing the integral range from [0, π] to [0,

π

2
] and making a variable

transformation θ′ → π

2
− θ′′ yield

R = σJ̄0R
4

π

∫ π/2

0

dψ cos2 ψ

∫ π/2

0

dθ′′g(ω0 + σÃ0(θ
′′) sinψ), (125)

R1 = σJ̄1R1
4

π

∫ π/2

0

dψ cos2 ψ

∫ π/2

0

dθ′′g(ω0 + σÃ0(θ
′′) sinψ) cos2 θ′′, (126)

Ã0(θ
′′) ≡ Â0(

π

2
− θ′′) =

√
(J̄0R)2 + (J̄1R1 cos θ′′)2. (127)

These are nothing but the SCEs (91), (92), and (93) for the stable Pn solution. Now, let us

summarize the formulae of the boundary between the S and Pn solutions.

J̄1 = [
4

π

∫ π/2

0

dψ cos2 ψ

∫ π/2

0

dθ′′

×
(
g̃(Ã0(θ

′′) sinψ) + g̃′(Ã0(θ
′′) sinψ)

(J̄0R)
2

Ã0(θ′)
sinψ

)
sin2 θ′′]−1, (128)

R = J̄0R
4

π

∫ π/2

0

dψ cos2 ψ

∫ π/2

0

dθ′′g̃( Ã0(θ
′′) sinψ), (129)

R1 = J̄1R1
4

π

∫ π/2

0

dψ cos2 ψ

∫ π/2

0

dθ′′g̃(Ã0(θ
′′) sinψ) cos2 θ′′, (130)

Ã0(θ
′′) =

√
(J̄0R)2 + (J̄1R1 cos θ′′)2. (131)
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XIII. APPENDIX E. DERIVATION OF THE SCES FOR THE SPINNING SO-

LUTION AND PENDULUM SOLUTION FOR MODEL 2

In model 2, the interaction is given by

Jθ,θ′ =
1

N
[Jm cos{m(θ − θ′)}+ Jn cos{n(θ − θ′)}], (132)

where m and n are positive integers, and we assume m < n. Order parameters are defined

as

Rkce
iΘkc =

1

N

∑
θ

cos(kθ)eiφθ , (133)

Rkse
iΘks =

1

N

∑
θ

sin(kθ)eiφθ . (134)

k is m or n. As usual, we assume that Rkc and Rks tend to be constant and Θkc →

ω0t + Θ′
kc,Θks → ω0t + Θ′

ks as t tends to ∞, and Θ′
kc and Θ′

kc are constant. The evolution

equation for φθ reduces to

d

dt
φθ = ωθ − Aθ sin(φθ − ω0t− αθ),

Aθe
iαθ =

∑
k=m,n

Jk[Rkc cos(kθ)e
iΘ′

kc +Rks sin(kθ)e
iΘ′

ks ]. (135)

Defining ψθ = φθ − ω0t− αθ, the evolution equation becomes

d

dt
ψθ = ωθ − ω0 − Aθ sinψθ. (136)

The order parameters are calculated as follows:

Rkc =
1

2π

∫ 2π

0

dθ

∫ π/2

−π/2
dψns(θ, ψ) cos(kθ)e

i(ψ+αθ−Θ′
kc), (137)

Rks =
1

2π

∫ 2π

0

dθ

∫ π/2

−π/2
dψns(θ, ψ) sin(kθ)e

i(ψ+αθ−Θ′
ks). (138)

From these equations, we obtain

Rkc = Z
∑

k′=m,n

Jk′ [Rk′c〈cos(k′θ) cos(kθ)〉ei(Θ
′
k′c−Θ′

kc)

+Rk′s〈sin(k′θ) cos(kθ)〉ei(Θ
′
k′s−Θ′

kc)], (139)

Rks = Z
∑

k′=m,n

Jk′ [Rk′c〈cos(k′θ) sin(kθ)〉ei(Θ
′
k′c−Θ′

ks)

+Rk′s〈sin(k′θ) sin(kθ)〉ei(Θ
′
k′s−Θ′

ks)]. (140)
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Z and 〈·〉 mean the same as before. That is,

〈B〉 = 1

Z

1

π

∫ π/2

0

dψ

∫ 2π

0

dθg(ω0 + Aθ sinψ) cos
2 ψB, (141)

Z =
1

π

∫ π/2

0

dψ

∫ 2π

0

dθg(ω0 + Aθ sinψ) cos
2 ψ. (142)

We further define Rk and ϕk by Rkc + iRks = Rke
ikϕk . For simplicity, we omit primes from

the Θs except for the expressions of αθ ad φ
∗
θ.

A. Spinning solution

First, let us study the Spinning solution. We will assume Rm > 0, Rn = 0 and examine

the auxiliary equations, which are the imaginary parts of eqs. (139) and (140).

Rm sin(mϕm)〈cos(mθ) sin(mθ)〉 sin(Θmc −Θms) = 0, (143)

Rm cos(mϕm)〈cos(mθ) sin(mθ)〉 sin(Θmc −Θms) = 0. (144)

These equations are similar to eqs. (72) and (73) in Appendix A. Therefore, for the stable

S solution, cos(Θmc −Θms) = 0 and 〈cos(mθ) sin(mθ)〉 = 0 follow, and Aθ becomes

Aθ = Jm
√

(Rmc cos(mθ))2 + (Rms sin(mθ))2

= JmRm

√
1

2

(
1 + cos(2mϕm) cos(2mθ)

)
. (145)

The SCEs are derived from the real parts of eqs. (139) and (140).

Rmc = JmRmcZ〈cos2(mθ)〉, (146)

Rms = JmRmsZ〈sin2(mθ)〉. (147)

Rmc + iRms becomes

Rme
imϕm = JmRmZ

(
cos(mϕm)〈cos2(mθ)〉+ i sin(mϕm)〈sin2(mθ)〉

)
(148)

and eq. (148) is rewritten as

1 =
1

2
JmZ

(
1 + e−2imϕm〈cos(2mθ)〉

)
. (149)

The real and imaginary parts of eq. (149) are

1 =
1

2
JmZ

(
1 + cos(2mϕm)〈cos(2mθ)〉

)
. (150)

0 =
1

2
Jm sin(2mϕm)〈cos(2mθ)〉. (151)
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Since in model 1, RcRs 6= 0 holds for the stable Spinning solution, we assume that RmcRms 6=

0. Thus, sin(2mϕm) 6= 0 and 〈cos(2mθ)〉 = 0 follow from eq. (151). Therefore, we obtain

cos(2mϕm) = 0 from eq. (145) and then Rmc = Rms =
1√
2
Rm, Aθ = JmRmc. Thus, eq. (150)

becomes

1 =
1

2
JmZ, (152)

that is,

1 = Jm

∫ π/2

0

dψg(ω0 + JmRmc sinψ) cos
2 ψ. (153)

This equation is the same as eq. (29) for the stable Spinning solution. The critical point is

J (c)
m = J

(c)
1 =

4

πg(ω0)
= 2J

(c)
0 . (154)

The synchronized solution is

αθ = Θ′
c ∓mθ,

φ∗
θ = ω0t+ ψ∗

θ + αθ = ω0t+ sin−1

(
ωθ − ω0

JmRmc

)
+Θ′

c ∓mθ. (155)

The phase of the solution changes by ±2πm when θ changes by 2π; that is, its rotation

number is m.

B. Pendulum solution

Here, we assume RmRn > 0. From the imaginary part of eq. (139) with k = m and the

imaginary part of eq. (139) with k = n, we obtain

−JmRm sin(mϕm)〈cos(mθ) sin(mθ)〉 sin(Θmc −Θms)

+JnRn[cos(nϕn)〈cos(mθ) cos(nθ)〉 sin(Θnc −Θmc)

+ sin(nϕn)〈cos(mθ) sin(nθ)〉 sin(Θns −Θmc) = 0,

JmRm[cos(mϕm)〈cos(nθ) cos(mθ)〉 sin(Θmc −Θnc)

+ sin(mϕm)〈cos(nθ) sin(mθ)〉 sin(Θms −Θnc)]

+JnRn sin(nϕn)〈cos(nθ) sin(nθ)〉 sin(Θns −Θnc) = 0. (156)
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The sufficient conditions for these equations are that the coefficients of Rm ad Rn are 0.

Accordingly, we obtain

sin(mϕm)〈cos(mθ) sin(mθ)〉 sin(Θmc −Θms) = 0, (157)

JnRn sin(nϕn)〈cos(nθ) sin(nθ)〉 sin(Θnc −Θns) = 0. (158)

For the Pendulum solution, we assume sin(Θmc−Θms) = 0 and sin(Θnc−Θns) = 0 because

similar conditions are obtained in model 1 for the stable Pn solution.

(Imaginary part of eq.(139) with k = m) + (i× imaginary part of eq.(140) with k = m),

and (the imaginary part of eq.(139) with k = n) + ((−i)× imaginary part of eq.(140) with

k = n) reduce to

sin(Θnc −Θms)〈eimθ cos(Θmc−Θms) cos{n(θ′ − θ̃)}〉 = 0, (159)

sin(Θnc −Θms)〈einθ cos(Θnc−Θns) cos(mθ′)〉 = 0. (160)

Here, we define

θ̄k = ϕke
i(Θkc−Θks) = ϕk cos(Θkc −Θks), θ̃ = θ̄n − θ̄m, θ

′ = θ − θ̄m.

We assume that sin(Θnc − Θms) 6= 0. From the real and imaginary parts of eq. (159), we

obtain

〈cos(mθ) cos{n(θ′ − θ̃)}〉 = 0, (161)

〈sin(mθ) cos{n(θ′ − θ̃)}〉 = 0. (162)

From the real and imaginary parts of eq. (160), we obtain

〈cos(nθ) cos(mθ′)〉 = 0, (163)

〈sin(nθ) cos(mθ′)〉 = 0. (164)

(eq. (161)+ i eq. (162)) and (eq.(163)+ i eq.(164)) reduce to

〈eimθ′ cos{n(θ′ − θ̃)}〉 = 0, (165)

〈einθ′ cos(mθ′)〉 = 0, (166)

where θ has been replaced with θ′ + θ̄m. From eq. (166), we obtain

〈cos{(m+ n)θ′}+ cos{(n−m)θ′}〉 = 0, (167)

〈sin{(m+ n)θ′}+ sin{(n−m)θ′}〉 = 0. (168)
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On the other hand, by using eq. (166), eq. (165) reduces to

〈sin{(n−m)θ′ − nθ̃}〉 = 0. (169)

Aθ = Aθ′+θ̄m is expressed as

Aθ′+θ̄m =

(
(JmRm)

2 cos2(mθ′) + (JnRn)
2 cos2{n(θ′ − θ̃)}

+JmJnRmRn cos(Θnc −Θms) cos(Θmc −Θms)[cos(nθ̃)
(
cos{(m+ n)θ′}+ cos{(n−m)θ′}

)
+sin(nθ̃)

(
sin{(m+ n)θ′}+ sin{(n−m)θ′}

)
]

)1/2

. (170)

cos(Θnc−Θms) cos(nθ̃) = 0 and cos(Θnc−Θms) sin(nθ̃) = 0 follow from eqs. (167) and (168).

That is,

cos(Θnc −Θms) = 0. (171)

Therefore, we obtain

Aθ′+θ̄m =

√(
JmRm cos(mθ′)

)2
+
(
JnRn cos{n(θ′ − θ̃)}

)2
. (172)

〈cos{(m+ n)θ′}〉 = 0 and 〈sin{(m+n)θ′}〉 = 0 follow from eq. (172) because n 6= m. Thus,

eqs. (167) and (168) reduce to

〈cos{(n−m)θ′}〉 = 0, (173)

〈sin{(n−m)θ′}〉 = 0. (174)

Therefore, eq. (169) is satisfied. If n 6= 3m, conditions (173) and (174) are automatically

satisfied. For simplicity, we will assume n 6= 3m. Thus, the conditions for Pn are

sin(Θmc −Θms) = 0, sin(Θnc −Θns) = 0, cos(Θnc −Θms) = 0. (175)

Now, let us study the SCEs, which are the real parts of eqs. (139) and (140). (The real part

of eq. (139) with k = m) + (i× the real part of eq. (140) with k = m) and (the real part

of eq. (139) with k = n) + (i× the real part of eq. (140) with k = n) give the SCEs,

1 =
JmZ

2
〈1 + e2imθ

′ cos(Θmc−Θms)〉, (176)

1 =
JnZ

2
〈1 + e2in(θ

′−θ̃) cos(Θnc−Θns)〉. (177)

43



The real and imaginary parts of eq. (176) are

1 = JmZ〈cos2(mθ′)〉, (178)

〈sin(2mθ′)〉 = 0. (179)

The real and imaginary parts of eq. (177) are

1 = JnZ〈cos2{n(θ′ − θ̃)}〉, (180)

〈sin{2n(θ′ − θ̃)}〉 = 0. (181)

Equation (179) is automatically satisfied since Ãθ′ does not contain the factor sin(2mθ′).

From eq. (181), we have

〈sin(2nθ′)〉 cos(2nθ̃) = 〈cos(2nθ′)〉 sin(2nθ̃). (182)

The sufficient condition for this is cos(2nθ̃) = 0 or sin(2nθ̃) = 0, and it determines the value

of θ̃.

Therefore, the SPEs are

1 = JmZ〈cos2(mθ)〉, (183)

1 = JnZ〈cos2{n(θ′ − θ̃)}〉. (184)

By changing the variable from θ to θ′, the SPEs can be expressed as

1 =
Jm
π

∫ π/2

0

dψ

∫ 2π

0

dθ′g(ω0 + Aθ′+θ̄m sinψ) cos2 ψ cos2(mθ′), (185)

1 =
Jn
π

∫ π/2

0

dψ

∫ 2π

0

dθ′g(ω0 + Aθ′+θ̄m sinψ) cos2 ψ cos2{n(θ′ − θ̃)}, (186)

where Aθ′+θ̄m =
√(

JmRm cos(mθ′)
)2

+
(
JnRn cos{n(θ′ − θ̃)}

)2
. Setting ᾱθ = αθ − Θms, we

have

Aθ cos ᾱθ = JmRm cos(Θmc −Θms) cos(mθ
′), (187)

Aθ sin ᾱθ = JnRn sin(Θnc −Θms) cos{n(θ′ − θ̃)}. (188)

Thus,

φ∗
θ = ω0t+ sin−1

(
ωθ − ω0

Aθ

)
+ ᾱθ +Θ′

ms. (189)

This formula shows that the rotation number can take on values of 0,±1, · · · ,±m.
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