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ABSTRACT
We study a neural network model(Amit
model) which is introduced by Griniasty et.al
[1] to explain the neurocognitive experiments
by Miyashita et.al [2,3]. For this model,
the coexistence of several attractors includ-
ing correlated attractors was reported in the
cases of finite and infinite loading [4,5,6]. In
this paper, by means of statistical mechani-
cal method, we study statics and dynamics of
the model in the case of the extensive loading,
mainly focusing on the dynamical behaviour
in coexistence region of a correlated attractor
and the Hopfield attractor. We derive the
evolution equations by the dynamical replica
theory and find several characteristic tem-
poral behaviour. The theoretical results are

confirmed by numerical simulations.
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1. FORMULATION

We assume that the instantaneous state of
each neuron is expressed by s; which takes
+1, where ¢ labels the neuron(i = 1,--- , N),

and time evolution is given by
si(t + 1) = sign(h;(t)), (1)

where
hi(t) =Y Jijs;(t). (2)
J(#)
We also consider stochastic dynamics intro-

ducing temperature 1', that is, the probabil-
ity that s;(t + 1) takes +1 is given by

1 + tanh(Bh;(t))
5 )
(3)

Prob[s;(t +1) = +1] =

where = 1/T.

As an extensive loading case, we consider the



following synaptic weight .J;;,

Ji = e +agig T agheh )
pn=1

p

+ > iy for i # 4,
p=c+1

Ju =0, & =¢, &t =¢.

¢ is the number of condensed patterns and is
set to ¢ = 13. p is the total number of pat-
terns and we consider the case that o = £
is finite. We assume that &' and n!' take +1
or -1 with the probability 1/2. The overlap
my(s) between the state of neurons s and the

u-th pattern £€* is defined as

N
1
mu(s) = stlgéu for,u: L--e
i=1

N
1
= Nz.smf foru=c+1,---,p.
i=1

The cross-talk noise z;(s) is defined as

As order  parameters, we  define
m =t (my,ma,---,m.) and r =
1 NP 2 . .

5 2 p=c+1(mpu(s))® where ar is the variance

of the cross-talk noise.

2. EQUILIBRIUM STATES

By using the replica method, the free energy

f for the replica symmetric(RS) solution is

given as [7]
1
f = ﬁthm + a—f?‘(l —q)

a Bq
+Z§OMI_5+5@_1B+@J
—T[/ DzIn{2cosh B(varz +' CAm)}}C,

(4)
where ¢ =t (¢1,---,¢¢) and [<I>]C is the aver-

age over ¢, that is Q%E{Cuzﬂ}@. The S.P.E.

for m, g and r are given by

m = [ / Dztanh B(*¢Am + Var2)]e,
(5)
g = [/thanh2ﬂ(tCAm+ 047"3)]47
(6)
q
N TS P "

where ¢ = (1 — ¢q) and A is a ¢ X ¢ matrix
defined as,

1 a 0 0 a
a a 0 0
a a 0 0
A = .
0 a a O
a 0 0 a 1

For T' = 0, these equations become

2 t¢Am ,
¢ = e e )

tCAmM
mo= =ACH (10)
1
S CErh )

where H(z) = [* \/d—;_we_tz/Q.



3. DYNAMICS

As for the dynamics, we derive the evo-
lution equations for (m,r) by the dy-
namical replica theory(DRT) [8]. We as-

sume that the transition probability w;(s)

from a state (si,---,s;,---,sy) to a state
F;s = (s1,-++,—si,--- ,sn) takes the follow-
ing form

1 — s; tanh{Bh;(s)}
2

wi(s) =

where F; is the flip operator of the i-th neu-
ron. Then the master equation for the micro-

scopic probability function p(s) is

d N
%pt( s) = Z{wi(Fz‘S)pt(FiS) —w;(8)pe(s)}.
i=1

Adopting asynchronous dynamics, we obtain
the following evolution equations for m and
r by using the replica method under the RS
ansatz, assuming that the self-averaging for

the limit of N — oo.
</Da:/Dy
x¢{1 —tanh(*Cp + vy
\/_p

x tanh B(‘*¢Am + U~
(/Dx/Dy
X — {1—tanh Cu+y1/ \/_p

xU™ tanh B({}¢Am +U"™) 77“%—1
where ¢ = &, A = 1“_’”{5(11__(2) and U™ (z) =

V2ex — A. The parameters ), p,q and p are

expressed in terms of m and r. The dynam-

ical equations for T' = 0 are obtained by re-
placing tanh 3(*¢Am +U~) by sign(!¢ Am +
U-).

4. RESULTS

By solving SPE (9-11), we found the coex-
istence of several attractors. In fig.1(a), we
show an example for which a correlated at-
tractor and a Hopfield attractor coexist for
a <0.017.

In a region where the correlated attractor
and the Hopfield attractor coexist, we inves-
tigated dynamical behaviour. We numeri-
cally integrated the dynamical equations (12)
and (13) with " = 1/8 =
the initial state m(0) = (m1(0),0,---,0)
and 7(0) = 1. In fig.1(b), we show the re-
sults by DRT and also the results by numer-

0 starting from

ical simulations. As is seen from the figure,
the basin of attraction obtained by DRT is
around m1(0) ~ 0.5. Except for the bound-
ary of the basin of attraction, the results by

two methods agree fairly well.
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Fig. 1. T = 0,pc = 13. (a) Equilibrium states. a = 0.4. (b) Trajectories in (m1,m2) plane. C: correlated attractor.
H: Hopfield attractor. a = 0.35, « = 0.01. +: simulation for N = 30000. Solid curve: DRT.



