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Abstract
We study a neural network model in which both neurons and synaptic
interactions evolve in time simultaneously. The time evolution of synaptic
interactions is described by a Langevin equation including a Hebbian learning
term with the learning coefficient ε, and a bias term which is the interaction
of the Hopfield model. We assume that synaptic interactions change is much
slower than neurons and we study the stationary states of synaptic interactions
by the replica method. We draw phase diagrams taking into account the stability
of solutions, and find that the temperature region in which the Hopfield attractor
is stable increases as the learning coefficient increases. Theoretical results
are confirmed by the direct numerical integration of the Langevin equation.
Further, we study the characteristics of the resultant synaptic interactions by
partial annealing in the parameter region where the Hopfield and the mixed
states exist. We find two kinds of interactions, one of which has the Hopfield
attractor and the other has the mixed state attractor. Each interaction is
characterized mainly by the eigenvector belonging to the largest eigenvalue
of the interaction as a matrix.

PACS numbers: 87.10.−e, 05.20.−y, 84.35.+i

1. Introduction

We are interested in systems not only with elements but also interaction changes between
elements. For example, in immune systems, the affinity, i.e. the interaction strength between
immune cells (B cells) and antigens, changes by somatic hypermutation. Another example is
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neuronal systems, in which synaptic connections change, and this is considered as learning.
In these two cases, elements interact much faster than the interactions change. In fact, in the
former case, the time scale that B cells recognize an antigen is about several hours, and one that
somatic hypermutation would take place in about one week. In the latter case, the time scale
of spiking of neurons is about several milliseconds, and of that the learning in the short-term
memory is in the order of minutes. That is, the time scales differ by about 102 times and
104 times in the former and the latter cases, respectively.

In this paper, we study a mathematical model of neuronal systems and consider the
double dynamics of neurons and synaptic interactions. As mentioned above, since the time
evolution of neurons is very rapid, in the model we investigate that interactions are considered
to be constant during the calculation of the average of correlations of neurons. We study the
stationary states of the system by the replica method. In this study, the replica number n
can be any value and the n → 0 limit is not used unlike the usual replica method. The case
whereby the synaptic interactions do not change we refer to as ‘quenched’, whereas when
they change together with neurons we refer to this as ‘annealing’. The present case in which
synaptic interactions change much slower than neurons is intermediate and is called ‘partial
annealing’.

Previously, there have been several studies on neural networks in which both synaptic
interactions and neurons evolve in time without using the replica method, e.g. [1–4]. Among
others, in [1] a rule of synaptic modification was proposed by minimizing ‘free energy’ and
the dynamics of synaptic interactions {Jij } was adiabatically slower compared to the neuronal
dynamics and deterministic. Later, several authors studied the model by introducing Gaussian
white noise and the bias term [5–7]. In these papers, the replica method was used. In [8],
the case in which the replica number is negative was treated. A more general situation in
which synaptic interactions are divided into a hierarchy of several groups, with adiabatically
separated and monotonically increasing time scale, was studied in [9].

In this paper, we study the same model as that in [5–7] introducing the coefficient of
the Hebbian learning and investigate the effect of the Hebbian learning in partial annealing.
We study the stable states of neurons and the resultant synaptic interactions when the system
reaches the stationary state [10, 11].

The idea to introduce the coefficient of learning term and investigate the system behavior
by changing it is easily applied to other systems. In fact, similar analyses are under
investigation for the Mexican-hat-type interactions [11] and for the Amit model [12].

In the next section, we give the formulation of the model and study the saddle
point equations, the Almeida–Thouless stability (AT stability) [13] which describes the
thermodynamic stability of solutions and the phase transitions. In section 3, the results
of numerical simulations are presented and are compared with theoretical results. In section 4,
we study the nature of interactions generated by partial annealing. In section 5, a summary
and discussion are given. In the appendix, we give the analysis of the AT stability compactly.

2. Formulation

2.1. Model

We consider the system with N neurons. We assume that a neuron takes only two states, the
firing state and the rest state. Let σi represent the state of ith neuron which takes values ±1,
σi = 1 corresponds to the firing state and σi = −1 corresponds to the rest state. The ith
neuron receives a signal from the j th neuron via synaptic connection. Let Jij be the strength
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of the synaptic connection. For simplicity, we consider the symmetric synaptic connection,
Jij = Jji .

We consider the situation that the network has already learned the p kind of memories,
which are expressed by patterns

{
ξ

μ

i

}
, i = 1, . . . , N, μ = 1, . . . , p. ξ

μ

i takes ±1 with the
probability p

(
ξ

μ

i = 1
2

) = 1 − p
(
ξ

μ

i = − 1
2

) = 1
2 independently. The learning rule is assumed

to be the Hebbian rule and the resultant interaction Kij is nothing but the Hopfield model
which is expressed as

Kij = K√
p

p∑
ν=1

ξν
i ξ ν

j . (1)

We assume that Jij converges to Kij if the learning term and the external noise do not exist.
Other causes of the evolution of the interaction are learning and fluctuations in the

environment around synaptic connections. The learning term is expressed by εσiσj . ε

represents the speed of the Hebbian learning. Since we assume that the time scale of
neurons is much larger than that of synaptic connections, we replace σiσj by the time
average 1

L

∑L
k=1 σi(tk)σj (tk) and further to the ensemble average 〈σiσj 〉sp. We assume that

the ensemble average 〈σiσj 〉sp is calculated by the canonical distribution with the Hamiltonian
H with the instantaneous values of Jij at time t:

〈σiσj 〉sp ≡ 1

Zβ

Tr{σi } e−βHσiσj , (2)

H({σi}) = −1

2

∑
i �=j

Jij σiσj , (3)

Zβ = Tr{σ } e−βH . (4)

Here, Tr{σ } denotes the summation of all configurations of neurons {σi}. Zβ is the partition
function of neurons. β = 1

T
and T represents the neuronal ‘temperature’ of the environment

around neurons. When T → 0, the rule of neuron firing becomes deterministic. Not only
are neurons subject to various influences from their environment but synaptic connections
are as well, for example, the influence of the fluctuations of the concentration of neuronal
transmitters. Thus, in the process of learning, time evolution of Jij is subject to external
noises. We express this effect by the term ηij which is a white Gaussian random variable with
the mean 0 and the following covariance:

〈ηij (t)ηkl(t
′)〉 = 2T̃ δikδjlδ(t − t ′). (5)

Here, T̃ represents the strength of the synaptic noise, and is called ‘temperature’ of the synaptic
noise.

Thus, the evolution equation for Jij is expressed by the following Langevin equation [6]:

τ
d

dt
Jij = 1

N
ε〈σiσj 〉sp +

1

N
Kij − μJij + ηij (t)

√
τ

N
,

i < j = 1, . . . , N.

(6)

The only term we did not mention is the third term −μJij , and it just represents the relaxation
and is introduced so that Jij does not diverge. The coefficients 1

N
and 1√

N
are scaling factors

so that the system has non-trivial limit as N → ∞.
In the present scheme, we assume that the neuronal system and the synaptic system are

in the different environments and then, in general, the synaptic temperature T̃ is not equal to
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the neuronal temperature T. This is plausible because the time scale of the change of neuron
states is much larger than that of the change of the synaptic connections.

By defining H as

H = −
∑
i<j

KijJij +
μN

2

∑
i<j

J 2
ij − ε

β
ln Zβ, (7)

the Langevin equation is rewritten as follows:

τ
dJij

dt
= − 1

N

∂H
∂Jij

+ ηij (t)

√
τ

N
. (8)

In the stationary state of equation (8), the probability density P({Jij }) of the synaptic
interactions {Jij } is given by

P({Jij }) ∝ e−β̃H, (9)

β̃ = 1

T̃
. (10)

Thus, the partition function Z̃β̃ of the total system is expressed by

Z̃β̃ =
∫

dJ e−β̃H

=
∫

dJZn
β e− β̃

2 Nμ
∑

i<j J 2
ij + β̃K√

p

∑
i<j Jij

∑p

ν=1 ξν
i ξ ν

j . (11)

Here, dJ = ∏
i<j dJij and n = ε

β̃

β
. Now, we calculate Zn

β by the replica method regarding n

as an integer. Introducing n replicas σ 1
i , σ 2

i , . . . , σ n
i , Zn

β is expressed as

Zn
β =

n∏
α=1

Tr{σα
i } e−βH({σα

i })

= Tr{σα
i } eβ

∑
i<j Jij

∑
α σα

i σ α
j +β

∑
ν,i hνξ

ν
i

∑
α σα

i . (12)

Then the integration over {Jij } is performed. We define order parameters mα
ν and qαβ as

mα
ν = 1

N

∑
i

σ α
i ξ ν

i , (13)

qαβ = 1

N

∑
i

σ α
i σ

β

i . (14)

Then we obtain the following expressions:

Z̃β̃ =
√

2π

β̃
Nμ

∫ [ ∏
α<β

iN

2π
dq̂αβ dqαβ

][ ∏
α,ν

∫
N

2π i
dm̂α

ν dmα
ν

]
eNG, (15)

G = G1 + G2 + G3, (16)

G1 = 1

4μ
β̃K2 +

β2

2μβ̃

∑
α<β

q2
αβ +

β2n

4μβ̃
+

βK

2μ
√

p

∑
α,ν

(
mα

ν

)2
+ β

∑
α,ν

hνm
α
ν , (17)

G2 = −
∑
α<β

q̂αβqαβ +
∑
α,ν

m̂α
ν mα

ν , (18)
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G3 = 1

N

∑
i

ln
{
Tr{σα

i } e
∑

α<β q̂αβσ α
i σ

β

i −∑
α,ν m̂α

ν σ α
i ξ ν

i

}
(19)

= [
ln

{
Tr{σα} e

∑
α<β q̂αβσ ασβ−∑

α,ν m̂α
ν σ αξν }]

. (20)

Since we consider the finite number of patterns p and take N → ∞ limit in this paper,
N � 2p holds. Therefore, in the first equation of the expression G3,

1
N

∑
i can be replaced

by the average over {ξ}. We denote this average by [· · ·] and get the second equality.
Now, we assume the replica symmetry (RS) as

qαβ = q,

mα
ν = mν,

q̂αβ = q̂,

m̂α
ν = m̂ν.

(21)

Let Gi,RS be Gi evaluated at the RS solution. Then we obtain the following expressions for
G1,RS,G2,RS and G3,RS:

G1,RS = 1

4μ
β̃K2 +

β2

μβ̃

n(n − 1)

4
q2 +

β2n

4μβ̃
+

βK

2μ
√

p
n

∑
ν

m2
ν + βn

∑
ν

hνmν, (22)

G2,RS = −n(n − 1)

2
q̂q + n

∑
ν

m̂νmν, (23)

G3,RS = −q̂
1

2
n +

[
ln

∫
Dx

{
cosh

(√
q̂x −

∑
ν

m̂νξ
ν

)}n]
+ n ln 2,

Dx = dx√
2π

e− x2

2 .

(24)

2.2. Saddle point equations (SPEs)

Defining GRS = G1,RS +G2,RS +G3,RS, we obtain the following saddle point equations, where

we put hν = 0 and define J = K
μ

√
p

and κ = β2

μβ̃
:

∂GRS

∂q
= 0 : q̂ = κq, (25)

∂GRS

∂q̂
= 0 : q =

[ ∫
Dx coshn � tanh2 �

{∫
Dx coshn �

}−1]
, (26)

∂GRS

∂mν

= 0 : m̂ν = −βJmν, (27)

∂GRS

∂m̂ν

= 0 : mν =
[
ξν

∫
Dx coshn � tanh �

{∫
Dx coshn �

}−1]
, (28)

� = √
κqx + β

∑
ν

Jmνξ
ν. (29)

In this paper, we study the case of p = 3 and abbreviate the SPEs as
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q ≡ ϕ(q,m1,m2,m3), (30)

mν ≡ ψν(q,m1,m2,m3) (ν = 1, 2, 3). (31)

We find the following solutions of the SPEs:

• paramagnetic solution (P): q = 0, mμ = 0,
• spin glass solution (SG): q > 0, mμ = 0,
• Hopfield attractor (H): q > 0, m1 �= 0, m2 = m3 = 0,
• mixed state with two patterns: q > 0, m1 = m2 �= 0, m3 = 0,
• mixed state with three patterns (M): q > 0, m1 = m2 = m3 �= 0.

In this paper, we analyze the Hopfield attractor, the mixed state with three patterns and the
spin glass state. We do not consider the mixed state with two patterns because it is expected
to be unstable, so hereafter, we refer to the mixed state with three patterns.

2.3. AT stability

We study the AT stability of the RS solution [13]. The condition of the stability is that the
free energy increases when order parameters deviate from those at the RS solution. The free
energy per neuron f̃β̃ is given by

f̃β̃ = − 1

N

1

β̃
ln Z̃β̃ = −G

β̃
. (32)

We define small deviations from the RS solution by

mα
ν = mν + εα

ν ,

qαβ = q + ηαβ,

and expand G up to the second order of deviations. Then G is expressed as

G = GRS +
1

2

∑
(αν)(βμ)

G(αν)(βμ)ε
α
ν εβ

μ +
1

2

∑
(αν)(βγ )

G(αν)(βγ )ε
α
ν ηβγ +

1

2

∑
(αβ)(γ δ)

G(αβ)(γ δ)η
αβηγ δ,

GRS = G |qαβ=q,mα
ν =mν

.

(33)

G is called the Hessian. The stability condition of the RS solution is that all eigenvalues of G
are negative. We calculated all eigenvalues for the Hopfield attractor, the mixed state and spin
glass state. There exist seven different kinds of eigenvalues for the Hopfield attractor and the
mixed state, and five different kinds of eigenvalues for the spin glass state. Details are given
in the appendix.

2.4. Phase transition

In this subsection, we study the phase transition. The second-order phase transition
temperatures are determined by the following relations:

T 2nd
P→H = T 2nd

P→M = K

μ
√

p
≡ J, (34)

T 2nd
P→SG = 1√

μβ̃
=

√
T̃

μ
, (35)

T 2nd
SG→H = J

{(
ε
T 2nd

SG→H

T̃
− 1

)
q + 1

}
, (36)

T 2nd
SG→M = T 2nd

SG→H . (37)
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Since the second-order phase transition temperature from the paramagnetic state to the Hopfield
attractor, T 2nd

P→H , and that from the paramagnetic state to the mixed state, T 2nd
P→M , are equal, we

denote them by T 2nd
P→HM . Here HM implies both the Hopfield attractor and the mixed state.

Similarly, since T 2nd
SG→H and T 2nd

SG→M are equal, we denote them by T 2nd
SG→HM . Next, we study

the first-order phase transition. In this case, a new phase appears suddenly irrespective of the
old phase from which the transition takes place. Thus, we consider the following three phase
transitions and obtain the equations to determine the phase transition temperatures.

(i) Transition to the Hopfield attractor

q = ϕ(q,m1, 0, 0), (38)

m1 = ψ1(q,m1, 0, 0), (39)(
1 − ∂ϕ

∂q

)(
1 − ∂ψ1

∂m1

)
− ∂ϕ

∂m1

∂ψ1

∂q
= 0. (40)

(ii) Transition to the mixed state

q = ϕ(q,m,m,m), (41)

m = ψ1(q,m,m,m), (42)(
1 − ∂ϕ

∂q

)(
1 − ∂ψ1

∂m

)
− ∂ϕ

∂m

∂ψ1

∂q
= 0. (43)

Derivatives in the above equations are calculated as
∂ψ1

∂m
= ∂

∂m
ψ1(q,m,m,m)

= ∂ψ1

∂m1
+

∂ψ1

∂m2
+

∂ψ1

∂m3
= ∂ψ1

∂m1
+ 2

∂ψ1

∂m2
,

∂ϕ

∂m
= ∂ϕ

∂m1
+

∂ϕ

∂m2
+

∂ϕ

∂m3
= 3

∂ϕ

∂m1
.

(iii) Transition to SG

q = ϕ(q, 0, 0, 0), (44)

∂ϕ

∂q
= 1. (45)

We solve the above equations numerically and determine the phase transition temperatures.
We have interest in how the emerging attractor changes as the parameters ε, T and T̃

change. In order to see this, taking into account the AT stability, we draw the phase diagram
in the T–ε plane for T̃ = 0.1 and 0.4 in figure 1. Hereafter, we fix K = 1 and μ = 1.

We list the common and different features in the results for T̃ = 0.1 and 0.4 below.

Common features

(i) When temperature is decreased from high temperature, the phase transition which takes
place firstly is the second-order one for small values of ε and is the first-order one for
large values of ε.

(ii) When temperature is decreased from high temperature, the Hopfield attractor appears
from the paramagnetic phase by the first-order phase transition at T = T 1st

H for a large
value of ε.
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H
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M

T̃ = 0.1
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P
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T

ε

T 2nd
P→SG

T 1st
H

T 2nd
SG→HM

T̃ = 0.4

Figure 1. Phase diagram in the T–ε space. K = 1.0, μ = 1.0, solid curve: T 2nd
P→HM , short-dashed

curve: T 2nd
P→SG, dashed–dotted–dotted curve: T 2nd

SG→HM , long-dashed curve: T 1st
H , dashed–dotted

curve: T 1st
M . Dotted horizontal lines indicate the parameter where simulations were performed.

Dotted curves denote phase boundaries which are not calculated theoretically but estimated by
numerical data available. RSB denotes the replica symmetry breaking state of the Hopfield
attractor.

(iii) As ε is increased, the first-order phase transition temperature from the paramagnetic
phase to the Hopfield attractor, T 1st

H , increases and then the temperature region where the
Hopfield attractor is stable increases.

Different features

(i) The spin glass phase does not exit for T̃ = 0.1, whereas it exists for T̃ = 0.4.
(ii) For T̃ = 0.4, the replica symmetry breaking of the Hopfield attractor takes place when

temperature is low.
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Figure 2. Temperature dependence of q. T̃ = 0.1, K = 1.0 and μ = 1.0. Solid curve: stable
solution. Dotted curve: unstable solution.

The different features can be understood theoretically as follows.

(i) From equations (34) and (35), we note the following. T 2nd
P→H = J and T 2nd

P→SG =√
T̃
μ

do not depend on ε. Since the former does not depend on T̃ neither, when T̃ is small,
T 2nd

P→H > T 2nd
P→SG and the Hopfield attractor appears firstly, whereas when T̃ is large,

T 2nd
P→H < T 2nd

P→SG and the spin glass phase appears firstly. Physically, this is interpreted
as follows. Since T̃ is the strength of the synaptic noise, if ε = 0, then n = 0, and the
present model becomes the Sherrington Kirkpatrick model (SK model) of spin glass in
which the average of the interaction depends on the suffix ij . Since the variance of Jij is
equal to T̃

Nμ
, when T̃ is large, the synaptic noise becomes large, and the system tends to

be spin glass. That is, the global order cannot exist but the local order is formed.
(ii) In the SK model, the replica symmetry of the spin glass solution, which exists at low

temperature, breaks infinitely many times when the average of Jij is 0. Although the
average of Jij is not 0 and ε is not 0 in the present model, similar behavior to the SK
model is expected.

Now, let us see the change of order parameter as the temperature is decreased from high
temperature. Since we would like to study the phase change including the spin glass phase,
we investigate the temperature dependence of q. Later, we investigate m.

We display the temperature dependence of q in figure 2 for T̃ = 0.1 and figure 3 for
T̃ = 0.4. In these figures, AT stability is also taken into account. The solid curves and dashed
curves correspond to AT stable and AT unstable solutions, respectively. We can see how the
first-order and second-order phase transitions take place, and the stability of solutions changes
in various manners. For example, let us see the left panel of figure 2. This corresponds to the
line of ε = 0.5 in the upper panel of figure 1. As temperature is decreased, the stable solution
changes as

para → Hopfield attractor and para → Hopfield attractor →
Hopfield attractor and mixed state.

Next, let us see the left panel of figure 3. This corresponds to the line of ε = 0.5 in the lower
panel of figure 1. As temperature is decreased, the stable solution changes as

para → spin glass → Hopfield attractor →
Hopfield attractor (RSB).
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Figure 3. Temperature dependence of q. T̃ = 0.4, K = 1.0 and μ = 1.0. Solid curve: stable
solution. Dotted curve: unstable solution.

Table 1. T̃ = 0.1,K = 1, μ = 1.0. Phase transition temperature of the Hopfield attractor and
the mixed state, and the ratio r of the stable temperature region for the mixed state to that for the
Hopfield attractor by taking into account the AT stability for several values of ε.

The Hopfield The mixed

attractor state r = stable region for the mixed state
stable region for the Hopfield attractor

ε = 0 0.58 0.27 0.47
ε = 0.5 0.61 0.38 0.62
ε = 1.0 0.83 0.68 0.82
ε = 1.5 1.07 0.92 0.86

The last transition is due to the loss of the AT stability of the RS solution of the Hopfield
attractor, that is, the replica symmetry breaking (RSB) solution appears.

As seen from these figures, various phases appear depending on the values of
T , T̃ , ε.

In table 1, we show the phase transition temperature of the Hopfield attractor, T H
c , that of

the mixed state, T M
c , and the ratio r of the stable temperature region for the mixed state to that

for the Hopfield attractor by taking into account the AT stability for several values of ε and
T̃ = 0.1. We note that T H

c , T M
c and r increase as ε increases from 0.

3. Simulations

We set τ = 1 without loss of generality, and K and μ are set to 1 for simplicity. We performed
direct integrations of the Langevin equation (6) changing parameters T , T̃ and ε. We used
the Euler method with the time increment �t = 0.1. We adopted the following procedure
according to [6]. When N times of update by the Monte Carlo method are tried, we call it 1
Monte Carlo step and denote it by 1[MCS].

(i) Set an initial state of interactions J(0).
(ii) Update neurons σ by R1 [MCS].

(iii) Calculate 〈σiσj 〉 during the R2 [MCS] update of neurons.
(iv) Update J by the Euler method.

10
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Figure 4. Temperature dependence of m1, m2, m3 for the Hopfield attractor. T̃ = 0.1,K = 1.0
and μ = 1.0. Curves are theoretical results. Solid curves are stable and dotted curves are unstable.
Symbols are simulation results for N = 1000.
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Figure 5. Temperature dependence of m1,m2,m3 for the mixed state. T̃ = 0.1,K = 1.0 and
μ = 1.0. Curves are theoretical results. Solid curves are stable and dotted curves are unstable.
Symbols are simulation results for N = 2000.

(v) Repeat two to four R3 times.
(vi) Calculate averages of physical quantities during the R4 repetitions of two to four.

In this procedure, the total number of updates of neurons is (R1 + R2)(R3 + R4) [MCS]. As
Rs, we took R1 = R2 = R3 = R4 = 500.

We show the numerical results for m1,m2,m3 together with theoretical ones for the
Hopfield attractor in figure 4 and for the mixed state in figure 5.

We chose T̃ = 0.1 because the parameter region in (T , ε) where the Hopfield attractor
and the mixed state appear is wide as seen from figure 1. We chose ε = 0.5, 1.0, 1.5. ε = 1 is
chosen because this value corresponds to the situation that the order of the magnitude of the
learning term 〈σiσj 〉sp and the term Kij are equal. Two other values are chosen because we
focus on the case of positive values of ε and we wanted to choose a larger and a smaller value
of ε compared with ε = 1.
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We chose the system size N = 1000 in the simulation for the Hopfield attractor and
N = 2000 in that for the mixed state, and confirmed that these values are appropriate for
getting results with sufficient accuracy in reasonable machine time.

From the theoretical results, we expect the following properties.

(i) The upper branches of the solutions are stable and their lower branches are unstable.
(ii) As ε is increased, the temperature region in which the Hopfield attractor and/or the mixed

state exist becomes wider.
(iii) The Hopfield attractor and the mixed state appear by the first-order phase transition at

T = T 1st
H and T = T 1st

M , respectively.
(iv) There is one exception of the above statements. That is, in the case of the mixed state at

ε = 0.5, the RS solution is unstable above T = 0.38, which is less than T = T 1st
M .

All of the these theoretical predictions are confirmed by the simulations. The agreement
between simulations and the stable upper branch solutions by theory is good, except for two
cases in the simulations of the mixed state. One is just above the critical temperature for
ε = 1.0 and ε = 1.5. In the paramagnetic phase, fluctuations are very large. The other is
around the temperature where the AT instability takes place for ε = 0.5. In this case, the
phase transition takes place at the temperature which is lower than the theoretical prediction.
Results in both cases are considered to be finite-size effects.

4. On the nature of interactions generated by partial annealing

In this section, we numerically study the interaction {Jij } which appears after partial annealing.
There are two types of such interactions. One is

{
JH

ij

}
in which the Hopfield attractor

(m1 > 0,m2 � 0,m3 � 0) appears during partial annealing, and the other is
{
JM

ij

}
in which

the mixed state (m1 � m2 � m3 > 0) appears. Using these two interactions, we performed
Monte Carlo simulations taking the following initial conditions: three kinds of Hopfield
attractor like initial conditions, (1, 0, 0), (0, 1, 0), (0, 0, 1), and eight kinds of mixed state like
initial conditions, (±1/2,±1/2,±1/2), and random configurations. We describe the results
obtained at T̃ = 0.1, ε = 1.0. The results at other parameters are the same as those at the
present parameters.

In figure 6, we display the time series of m1,m2,m3 at T = 0.4. We found that
when the interaction is

{
JH

ij

}
, the neuron system converges to the Hopfield attractor,

(m1 > 0,m2 � m3 � 0) or (m1 < 0,m2 � m3 � 0), whereas when the interaction is{
JM

ij

}
, it converges to the mixed state, (m1 � m2 � m3 > 0) or (m1 � m2 � m3 < 0).

That is, irrespective of initial conditions, the neuron system converges to the attractor which
appeared in the process of partial annealing, or to the reversed attractor whose elements mμ

have opposite sign to the attractor.
Next, we study the temperature dependence of the order parameters m1,m2 and m3

which are estimated after the system becomes stationary. At each temperature T, we use the
interaction

{
JH

ij

}
or

{
JM

ij

}
, and perform the Monte Carlo simulation. When the interaction{

JH
ij

}
or

{
JM

ij

}
is used, the initial condition is set to the mixed state or to the Hopfield attractor,

respectively. In figure 7, we display the theoretical and simulation results for the temperature
dependence of m1,m2 and m3. As seen from these figures, the resultant attractor by the Monte
Carlo simulation is the Hopfield attractor for

{
JH

ij

}
and the mixed state for

{
JM

ij

}
, respectively.

In the right panel of figure 7, the Hopfield attractor appears at T = 0.7, 0.75 and 0.8 because
the mixed state is unstable at these temperatures. The theoretical and numerical results agree
very well.
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Figure 6. Time series of m1,m2, m3. Numerical results (N = 500). K = 1, μ = 1, τ = 1.
T̃ = 0.1, ε = 1.0, T = 0.4. Left panel: interaction {JH

ij }, in which the Hopfield attractor appears

during partial annealing, is used. Right panel: interaction {JM
ij }, in which the mixed state appears

during partial annealing, is used. Initial state. Solid curve: m1 = 1, m2 = m3 = 0; dashed curve:
m1 � m2 � m3 � 0.5; dashed–dotted curve: random configuration.
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the mixed state appears during partial annealing is used. Initial state is the Hopfield attractor.

Now, we study interactions
{
JH

ij

}
and

{
JH

ij

}
in more detail. We regard

{
JH

ij

}
,
{
JH

ij

}
and {Kij } as nC2 dimensional vectors and denote them by JH , JM and K, respectively. In
figure 8, we display the temperature dependence of angles among these vectors. From
this figure, we note that JH and JM have almost the same direction and they are almost
perpendicular to K. Also, their norms are almost same and about 5.3. In order to clarify
the difference between

{
JH

ij

}
and

{
JM

ij

}
, we investigate the eigenvalues and eigenvectors. In

figure 9, we display the spectra of eigenvalues at T = 0.4. From this, we note that the spectra
for

{
JH

ij

}
and

{
JM

ij

}
are almost the same except for the largest eigenvalues. We calculate

direction cosines and angles between eigenvectors and pattern vectors, ξ1, ξ2, ξ3 and ξmix.
Here, the ith component of ξmix is given by

ξmix
i = sgn

(
ξ 1
i + ξ 2

i + ξ 3
i

)
,

where sgn(x) = 1 for x � 0 and −1 otherwise. As a result, we found that the
eigenvectors belonging to the three largest eigenvalues have large direction cosines with
some of pattern vectors, whereas the direction cosines for the other eigenvectors are almost
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0. Let λmax, λ2nd, λ3rd, λ4th be the four largest eigenvalues and |λmax〉, |λ2nd〉, |λ3rd〉, |λ4th〉 be
the normalized eigenvectors belonging to them, respectively. Since {Jij } is symmetric, all
eigenvectors are orthogonal. Then JH ≡ {

JH
ij

}
and JM ≡ {

JM
ij

}
are expressed as

JH = λH
max

∣∣λH
max

〉〈
λH

max

∣∣ + λH
2nd

∣∣λH
2nd

〉〈
λH

2nd

∣∣ + λH
3rd

∣∣λH
3rd

〉〈
λH

3rd

∣∣ + · · · , (46)

JM = λM
max

∣∣λM
max

〉〈
λM

max

∣∣ + λM
2nd

∣∣λM
2nd

〉〈
λM

2nd

∣∣ + λM
3rd

∣∣λM
3rd

〉〈
λM

3rd

∣∣ + · · · . (47)

We show the direction cosines for the four eigenvectors in table 2. From this table, we obtain
the following approximate expressions for pattern vectors by eigenvectors:

ξ1 � 0.97
∣∣λH

max

〉
, ξ2 � 0.44

∣∣λH
2nd

〉
+ 0.7

∣∣λH
3rd

〉
,

ξ3 � −0.72
∣∣λH

2nd

〉
+ 0.43

∣∣λH
3rd

〉
, ξmix � 0.5

∣∣λH
max

〉
+ 0.53

∣∣λH
3rd

〉
,

ξ1 � −0.56
∣∣λM

max

〉
+ 0.65

∣∣λM
3rd

〉
, ξ2 � −0.47

∣∣λM
max

〉
+ 0.55

∣∣λM
2nd

〉 − 0.48
∣∣λM

3rd

〉
ξ3 � −0.56

∣∣λM
max

〉 − 0.61
∣∣λM

2nd

〉 − 0.25
∣∣λM

3rd

〉
, ξmix � −0.95

∣∣λM
max

〉
.

Thus,
{
JH

ij

}
and

{
JM

ij

}
are characterized by three eigenvectors belonging to three large

eigenvalues. Contrary to our expectation, direction cosines between eigenvectors of JH and
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Table 2. T̃ = 0.1, ε = 1.0, T = 0.4, N = 500. The direction cosines and angles between the
eigenvectors and pattern vectors, and eigenvalues. The left and right values in parentheses are
direction cosines and angles, respectively.

ξ1 ξ2 ξ3 ξmix λ∣∣λH
max

〉
(0.97, 12) (−0.04, 88) (0.03, 88) (0.5, 60) 1.6∣∣λH

2nd

〉
(0.004, 90) (0.44, 64) (−0.72, 44) (−0.17, 80) 0.77∣∣λH

3rd

〉
(−0.007, 90) (0.70, 45) (0.43, 65) (0.53, 58) 0.73∣∣λH

4th

〉
(−0.01, 89) (−0.12, 83) (−0.05, 87) (−0.09, 85) 0.63∣∣λM

max

〉
(−0.56, 56) (−0.47, 62) (−0.56, 56) (−0.95, 18) 1.5∣∣λM

2nd

〉
(0.12, 83) (0.55, 56) (−0.61, 53) (0.006, 90) 0.77∣∣λM

3rd

〉
(0.65, 49) (−0.48, 61) (−0.25, 76) (−0.02, 89) 0.73∣∣λM

4th

〉
(0.008, 90) (−0.04, 88) (0.03, 88) (−0.03, 88) 0.63
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Figure 10. The temperature dependence of angles between eigenvector and pattern vector.
T̃ = 0.1, ε = 1.0, N = 500. + : |λH

max〉 and ξ1, ∗ : |λM
max〉 and ξmix.

ξ2, ξ3 and ξmix are not very large. Also, direction cosines between eigenvectors of JM and
ξ1, ξ2 and ξ3 are not very large. This is the reason that there is no coexistence of attractors
in JH and JM. In this respect, our simulations were not sufficient, although the agreement
between theoretical and numerical results for mμ is excellent as shown in figures 4, 5 and
7. It seems very difficult to obtain interactions by simulations, in which the coexistence of
attractors occurs for such a large system size N that theoretical and numerical results agree
fairly well.

Now, let us study the temperature dependence of the angle between
∣∣λH

max

〉
and ξ1, and

that between
∣∣λM

max

〉
and ξmix. See figure 10. As seen from the figure, the angles are rather

small and about 12◦ or 18◦ for
{
JH

ij

}
or

{
JM

ij

}
at all temperatures where the Hopfield or the

mixed state appears, respectively.
From the results obtained in this section, we conclude that each interaction obtained in

our simulations is characterized mainly by the eigenvector
∣∣λH

max

〉
or

∣∣λM
max

〉
for

{
JH

ij

}
or

{
JM

ij

}
,

respectively.

5. Summary and discussion

We investigated the change of the system behavior by partial annealing in which the synaptic
weights change but much slower than the neurons. We assumed that the system has already
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learned p patterns, the Hopfield model, and introduced the coefficient ε of the Hebbian learning.
We studied the stationary states of the Langevin equation by changing parameters, those are
the learning coefficient ε, the neuron ‘temperature’ T and the synaptic weight ‘temperature’
T̃ .

We drew the phase diagrams in the (T , ε) plane for T̃ = 0.1 and 0.4 by taking into account
the AT stability. When parameters are changed, various kinds of phase transitions take place.
Here, we summarize and discuss significant results among others.

(i) When temperature is decreased from high temperature, the phase transition which takes
place firstly is the second-order one for small values of ε and is the first-order one for
large values of ε.

(ii) When temperature is decreased from high temperature, the Hopfield attractor appears
from the paramagnetic phase by the first-order phase transition at T = T 1st

H for large
values of ε.

(iii) As ε is increased, the first-order phase transition temperature from the paramagnetic
phase to the Hopfield attractor, T 1st

H , increases and then the temperature region where the
Hopfield attractor is stable increases.

From these results, we can conclude that for large values of ε, the larger the Hebbian learning
term ε〈σiσj 〉sp is, the more stable the Hopfield attractor is.

When T̃ = 0.1, we found that there is the wide region where the Hopfield attractor and
the mixed state coexist in the (T , ε) plane, and the ratio of the temperature region where the
mixed state exists to that where the Hopfield attractor exists increases as ε increases. That is,
the learning term not only makes the Hopfield attractor stable but also the mixed state more
stable when the synaptic noise T̃ is small and ε is large.

For large values of T̃ = 0.4, we found that there is a temperature region where  the  spin
glass phase exists for small values of ε, whereas for large ε, the spin glass phase disappears,
and instead, the Hopfield attractor appears. In addition, the replica symmetry breaking of the
Hopfield attractor takes place when temperature is low.

If ε = 0, the present model becomes the Sherrington–Kirkpatrick model (SK model) of
spin glass in which the average of the interaction depends on the suffix ij and the variance of
Jij is T̃

Nμ
. Therefore, it is quite natural that when T̃ is large and the effect of learning is small

for small ε, the system tends to be spin glass state. In the SK model, the replica symmetry
breaks infinitely when T is small. So, it is reasonable that the replica symmetric Hopfield
attractor becomes AT unstable at low value of T.

We performed the direct simulations of the Langevin equation and calculated order
parameters. The theoretical results were confirmed by the numerical simulations, except
for the finite size effects observed only for several values of parameters.

In order to study the nature of interactions generated by partial annealing, we performed
the Monte Carlo simulations at T̃ = 0.1 and ε = 1.0 using the synaptic weights obtained
by partial annealing and found that there are two types of interactions, one of which is

{
JH

ij

}
in which the Hopfield attractor appears during partial annealing, and the other of which is{
JM

ij

}
in which the mixed state appears. Using these two interactions, we performed Monte

Carlo simulations with various initial conditions, and found that irrespective of the initial
conditions, the neuron system converges to the attractor which appeared in the process of
partial annealing. We studied the nature of

{
JH

ij

}
and

{
JM

ij

}
in details. We calculated the

direction cosines and angles between two interactions, their eigenvalue spectra, eigenvectors,
and the direction cosines and angles between eigenvectors and pattern vectors. From these
calculations, we found that JH and JM have almost the same direction and they are almost
perpendicular to K, and their eigenvalues are almost the same except for the largest ones. By
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the investigation of eigenvectors, we found that the eigenvectors belonging to the three largest
eigenvalues have large direction cosines with some of pattern vectors, whereas the direction
cosines for the other eigenvectors with pattern vectors are almost 0. Thus,

{
JH

ij

}
and {JM

ij } are
characterized by three eigenvectors belonging to three large eigenvalues. Further, we studied
the temperature dependence of the angle between

∣∣λH
max

〉
and ξ1, and that between

∣∣λM
max

〉
and

ξmix, and found that these angles are small at all temperatures where the Hopfield and the
mixed state appear, respectively. Therefore, we conclude that each interaction obtained in our
simulations is characterized mainly by the eigenvector

∣∣λH
max

〉
or

∣∣λM
max

〉
for

{
JH

ij

}
or

{
JM

ij

}
,

respectively.
Contrary to our expectation, direction cosines between eigenvectors of JH and the pattern

vectors ξ2, ξ3 and ξmix are not very large. Neither are direction cosines between eigenvectors
of JM and ξ1, ξ2 and ξ3. This is the reason why there is no coexistence of attractors in JH and JM.
Therefore, our simulations were not sufficient in the sense that the resultant interaction does
not have any coexistent attractors, although the theoretical predictions and numerical results
on the temperature dependences of order parameters and on the phase transition temperatures
agree quite well. Here, let us consider why the theoretical results and numerical ones for the
temperature dependence of m1,m2 and m3 agree although the coexistence of attractors does
no take place.

Since the learning rule is the Hebbian rule, once an attractor, say
{
σA

i

}
, appears in the

process of partial annealing, the relative weight of σA
i σA

j in the interaction Jij is increased
and the stability of the attractor increases. Since the external noise term exists, the learning
term is deteriorated, and depending on the values of T , ε and T̃ , the degree of stability of
the attractor such as the width and depth of its basin is determined. If one could perform
a simulation of the Langevin equation, in which a trajectory of {Jij } would wander around
any region of the phase space of interactions, any attractor would appear one after the other.
Let us call such a simulation as the ergodic simulation. As is expected by our simulation
results, the resultant interaction obtained by the ergodic simulation would be the summation
over such interactions each of which is characterized by one particular pattern vector. Since
the attractors are only a few, the interference between attractors would not take place, and then
when one of attractors, say σB , is retrieved, the temperature dependence of m1,m2 and m3 for
the resultant interaction by the ergodic simulation would be the same as that of the interaction
obtained by our simulation which has the attractor σB .

It would be necessary to perform numerical simulations in an appropriate method to
realize the coexistence of attractors. However, it would be very difficult, because we have to
attain ergodic behavior in the phase space of the interaction {Jij }, and at the same time the
system size should be large enough in order that the standard deviations for numerical results
are fairly small. This is a difficult feature problem.

In the present model, the case of T̃ = 0 and ε = 0 is nothing but the original Hopfield
model. In this case, the Hopfield attractor and the mixed state are stable for low temperatures.
We numerically confirmed that the Hopfield attractor is stable for all values of ε when it
exists for T̃ = 0.1, although we cannot ignore a possibility that the AT instability would take
place at very low temperature T for T̃ > 0. On the other hand, for T̃ = 0.4 we found the
region in which the Hopfield attractor becomes AT unstable with the replicon mode eigenvalue
λ3 > 0 indicating replica symmetry breaking. This happens when ε is less than 1. Thus, it is
concluded that if ε is larger than some value which depends on T̃ , the larger ε is, the wider
the temperature region of the stable Hopfield attractor is.

From figure 1, we note that for small values of ε, partial annealing cannot widen the stable
region of the Hopfield attractor. In particular, it seems that when ε becomes negative, i.e. in
the case of unlearning, no significant change happens in the phase diagram. We consider that
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this is because the loading rate of patterns, α = p

N
, is 0 in this study. If α is positive and large,

results might change. This is an interesting unsolved problem.

Acknowledgments

The authors are grateful to Dr Kimoto and Dr Kawamura for valuable discussions. This work
is supported by the Nara Women’s University Intramural Grant for project research.

Appendix. AT stability of solutions

In this appendix, the eigenvalues and eigenvectors of the Hessian are calculated. Below, the
symbols α, β, γ and δ indicate the replica indexes and symbols μ and ν the pattern induces.

Let the Hessian matrix G be an L × L matrix. L is the summation of the dimensions of{
εα
ν

}
space and that of {ηαβ} space, i.e. L = 3n + nC2 = n(n+5)

2 for p = 3. The eigenvalue
equation is expressed as

Gμ = λμ, (A.1)

where λ is an eigenvalue of G and μ is the eigenvector belonging to λ. μ takes the following
form:

μ =
({

εα
ν

}
{ηαβ}

)
. (A.2)

{
εα
ν

}
and {ηαβ} denote a 3n dimensional and a nC2 dimensional column vectors, respectively.

Below, [· · ·] is the average over patterns ξ and a bar denotes the following average:

f (�) ≡ �−1
∫

Dx coshn(�)f (�), (A.3)

� ≡
∫

Dx coshn(�), (A.4)

� = β

{√
q

μβ̃
x +

K

μ
√

p

∑
ν

mνξ
ν

}
= √

κqx + βJ
∑

ν

mνξ
ν, (A.5)

κ ≡ β2

μβ̃
, J ≡ K

μ
√

p
. (A.6)

Further, 〈· · ·〉 denotes the following average at the replica symmetric solution:

〈· · ·〉 = TrσeH̃ · · ·
TrσeH̃

,

H̃ = κ
∑
α<β

(qαβ)2σασβ + βJ
∑
αν

mα
ν σαξν

= κq2
∑
α<β

σασβ + βJ
∑
αν

mνσ
αξν.

A.1. Hopfield attractor

We put m1 = m,m2 = m3 = 0. Then the non-zero elements of G are the seven quantities
defined as
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G(αν)(αν) ≡ ∂2G

∂mα2
ν

= −βJ (1 − βJ (1 − m2)) = A, (A.7)

G(αν)(βν) ≡ ∂2G

∂mα
ν ∂m

β
ν

= (βJ )2(q − m2) = B, (α �= β), (A.8)

G(αβ)(αβ) ≡ ∂2G

∂qαβ∂qαβ

= −κ[1 − κ(1 − 〈σασβ〉2)]

= −κ[1 − κ(1 − q2)] = P, (α �= β). (A.9)

G(αβ)(αγ ) ≡ ∂2G

∂qαβ∂qαγ

= κ2[〈σβσ γ 〉 − 〈σασβ〉2]

= κ2(q − q2) = Q,α, β and γ are all different. (A.10)

G(αβ)(γ δ) ≡ ∂2G

∂qαβ∂qγ δ

= κ2[〈σασβσ γ σ δ〉 − 〈σασβ〉2] = κ2(tanh4 �1 − q2) = R,

α, β, γ and δ are all different.

(A.11)

G(αβ)(αν) ≡ ∂2G

∂qαβ∂mα
ν

= κβJm(1 − q)δν1 = Cδν1, (α �= β). (A.12)

G(βγ )(αν) ≡ ∂2G

∂qβγ ∂mα
ν

= κβJ (tanh3 �1 − qm)δν1 = Dδν1, (α �= β, α �= γ ). (A.13)

Here, �1 = √
κqx + βJm. We list the eigenvalues, their degeneracies and eigenvectors:

λ
(1)±
1 = 1

2
{X ±

√
Y 2 + Z}, degeneracy: 1 for each,

X = A + (n − 1)B + P + 2(n − 2)Q +
(n − 2)(n − 3)

2
R,

Y = A + (n − 1)B − P − 2(n − 2)Q − (n − 2)(n − 3)

2
R,

Z = 2(n − 1){2C + (n − 2)D}2,

εα
1 = a, εα

2 = 0, εα
3 = 0, ηαβ = b;

(A.14)

λ
(2)
1 = A + (n − 1)B, degeneracy: 2,

εα
1 = 0, εα

μ = a′, ηαβ = 0, μ = 2 or 3; (A.15)

λ
(1)±
2 = 1

2
{X′ ±

√
(Y ′)2 + Z′}, degeneracy : (n − 1) for each,

X′ = A − B + P + (n − 4)Q − (n − 3)R,

Y ′ = A − B − P − (n − 4)Q + (n − 3)R,

Z′ = 4(n − 2)(C − D)2,

εθ
1 = c1, εα

1 = d1, ε
β

2 = 0, ε
β

3 = 0, α �= θ, θ is some replica index,

ηθβ = ηαθ = f, ηαβ = g, α �= θ and β �= θ;

(A.16)

λ
(2)
2 = A − B, degeneracy : 2(n − 1),

εθ
μ = c2, εα

μ = d2, εβ
ν = 0, α �= θ, ν �= μ,

θ is some replica index, μ = 2 or 3,

ηαβ = 0, for any α, β;

(A.17)
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λ3 = P − 2Q + R, degeneracy :
n(n − 1)

2
− n,

ε
θ1
1 = ε

θ2
1 = h1, εα

1 = h2, εβ
ν = 0, θ1 �= θ2,

α �= θ1, α �= θ2, ν �= 1,

θ1 and θ2 are some replica indexes,

(A.18)

ηθ1θ2 = u, ηθ1α = ηθ2α = v, ηαβ = w,

α �= θ1, α �= θ2 and β �= θ1, β �= θ2.
(A.19)

A.2. Mixed state with three patterns

We put m1 = m2 = m3 = m. �m is defined by

� = √
κqx + βJ

∑
ν

mνξν = √
κqx + βJm(ξ1 + ξ2 + ξ3) ≡ �m. (A.20)

Now, we list the non-zero elements of G:

G(αν)(αν) ≡ ∂2G

∂mα2
ν

= −βJ + (βJ )2{1 − [(tanh �m)2]} = A1. (A.21)

Since this quantity does not depend on ν, we define it A1. Below, we assume μ �= ν and
α, β, γ and δ are all different:

G(αν)(αμ) ≡ ∂2G

∂mα
ν ∂mα

μ

= (βJ )2{[〈σασβξνξμ〉] − [〈σαξν〉〈σαξμ〉]}

= (βJ )2{[ξνξμ] − [〈σα〉2ξμξν]}
= −(βJ )2[(tanh �m)2ξμξν] = A2, (A.22)

G(αν)(βν) ≡ ∂2G

∂mα
ν ∂m

β
ν

= (βJ )2{[〈σασβ〉] − [〈σα〉ξν〈σβ〉ξν]}

= (βJ )2{[tanh2 �m] − [(tanh �m)2]}
= (βJ )2{q − [(tanh �m)2]} = B1. (A.23)

At the last line, we used the following relations:

q = [〈σασβ〉] = [tanh2 �m], (A.24)

mα
ν = [〈σα〉ξν] = [tanh �mξν] = mν = m, (A.25)

G(αν)(βμ) ≡ ∂2G

∂mα
ν ∂m

β
μ

= (βJ )2{[〈σασβ〉ξνξμ] − [〈σα〉〈σβ〉ξνξμ]}

= (βJ )2{tanh2 �mξνξμ − [(tanh �m)2ξμξν]} = B2, (A.26)

G(αβ)(αν) ≡ ∂2G

∂qαβ∂mα
ν

= κβJ [〈σασβσαξν〉 − 〈σασβ〉〈σαξν〉]

= κβJ {[tanh �mξν] − [tanh2 �m · tanh �mξν]}
= κβJ {m − [tanh2 �m · tanh �mξν]} ≡ C, (A.27)
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G(αβ)(νγ ) ≡ ∂2G

∂qαβ∂m
γ
ν

= κβJ [〈σασβσ γ 〉ξν − 〈σασβ〉〈σγ 〉ξν]

= κβJ {[tanh3 �mξν] − [tanh2 �m · tanh �mξν]} ≡ D, (A.28)

G(αβ)(αβ) ≡ ∂2G

∂q2
αβ

= −κ + κ2{1 − [〈σασβ〉2]}

= −κ + κ2{1 − [(tanh2 �m)2]} ≡ P, (A.29)

G(αβ)(αγ ) ≡ ∂2G

∂qαβ∂qαγ

= κ2[〈σασβσασ γ 〉 − 〈σασβ〉2]

= κ2{[tanh2 �m] − [(tanh2 �m)2]}
= κ2{q − [(tanh2 �m)2]} ≡ Q, (A.30)

G(αβ)(γ δ) ≡ ∂2G

∂qαβ∂qγ δ

= κ2[〈σασβσ γ σ δ〉 − 〈σασβ〉2]

= κ2{[tanh4 �m] − [(tanh2 �m)2]} ≡ R. (A.31)

We list the eigenvalues, their degeneracies and eigenvectors:

λ
(1)±
1 = 1

2
{X ±

√
Y 2 + Z}, degeneracy: 1 for each,

X = A + (n − 1)B + P + 2(n − 2)Q +
(n − 2)(n − 3)

2
R,

Y = A + (n − 1)B − P − 2(n − 2)Q − (n − 2)(n − 3)

2
R,

Z = 6(n − 1)
{
2C + (n − 2)D

}2
,

A = A1 + (n − 1)B1, B = 2(A2 + (n − 1)B2)

n − 1
,

εα
1 = εα

2 = εα
3 = a, ηαβ = b,

(A.32)

λ
(2)
1 = A1 − A2 + (n − 1)(B1 − B2), degeneracy: 2,

εα
1 = a′

1, εα
2 = a′

2, εα
3 = a′

3, a′
1 + a′

2 + a′
3 = 0, ηαβ = 0,

(A.33)

λ
(1)±
2 = 1

2
{X′ ±

√
(Y ′)2 + Z′}, degeneracy : (n − 1) for each,

X′ = A1 − B1 + 2(A2 − B2) + P + (n − 4)Q − (n − 3)R,

Y ′ = A1 − B1 + 2(A2 − B2) − P − (n − 4)Q + (n − 3)R,

Z′ = 12(n − 2)(C − D)2,

εθ
1 = c1, εα

1 = d1, εθ
2 = c2, εα

2 = d2, εθ
3 = c3, εα

3 = d3,

α �= θ, θ is some replica index,

ηθβ = ηαθ =, ηαβ = g, α �= θ and β �= θ,

(A.34)
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λ
(2)
2 = A1 − A2 − (B1 − B2), degeneracy : 2(n − 1), εθ

1 = c1,

εα
1 = d1, εθ

2 = c2, εα
2 = d2, εθ

3 = c3, εα
3 = d3,

α �= θ, θ is some replica index,

ηαβ = 0, for any α, β,

ηαβ = 0, for any α, β,

ci = (1 − n)di, d1 + d2 + d3 = 0,

(A.35)

λ3 = P − 2Q + R, degeneracy :
n(n − 1)

2
− n,

εθ1
μ = εθ2

μ = rμ, εα
μ = sμ, μ = 1, 2, 3, θ1 �= θ2, α �= θ1, α �= θ2,

θ1 and θ2 are some replica indexes,

ηθ1θ2 = u, ηθ1α = ηθ2α = v, ηαβ = w,

α �= θ1, α �= θ2 and β �= θ1, β �= θ2.

(A.36)

A.3. Spin glass

For the spin glass solution, mμ = 0 and q �= 0. Thus, we only have to put m = 0, C = D = 0
in the quantities for the Hopfield attractor. Thus, we obtain the following eigenvalues:

λ
(1)+
1 = A + (n − 1)B = λ

(2)
1 = λ

(3)
1 , (A.37)

λ
(1)−
1 = P + 2(n − 2)Q +

(n − 2)(n − 3)

2
R, (A.38)

λ
(1)+
2 = A − B, (A.39)

λ
(1)−
2 = P + (n − 1)Q − (n − 3)R = λ

(2)
2 = λ

(3)
2 , (A.40)

λ3 = P − 2Q + R. (A.41)
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