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We analyze the time domain ensemble on-line learning of a Perceptron under the existence of external
noise. We adopt three typical learning rules, Hebbian, Perceptron, and AdaTron rules. We treat the input
and output noises. In order to improve the learning when it does not succeed in the sense that the student
vector does not converge to the teacher vector, we use an averaging method and give theoretical analysis
of the method. We obtain the precise formula for the overlap between the teacher vector and the time
averaged student vector for r — oo limit as a function of the number of student vectors to be averaged.
We compare the theoretical results with numerical simulations and find that the theoretical results agree

quite well with the numerical simulations.
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1. Introduction

We study the on-line learning by a single Perceptron!
from signals produced by a single teacher. We assume
that the data is contaminated by noise and we adopt the
Hebbian,? Perceptron,l) and AdaTron® rules as learning
rules.” There have been many studies that focus on the case
of a single teacher.’'”) In this paper, we treat the on-line
learning of a Perceptron. In the on-line learning, an example
vector is chosen randomly and used in order to update a
student vector by a learning algorithm. When the student
vector is updated next, another example vector is chosen
randomly. In contrast to this, for batch learning, many
example vectors are stored and all of them are used
simultaneously for learning. Although on-line learning
seems less efficient than batch learning, in some situations
the performance of on-line learning is comparable to that of
batch learning.

In the framework of on-line learning, we have interest in
ensemble learning in time domain.''"'® Here, we briefly
explain ensemble learning by using an example of the on-
line learning of Perceptrons. Suppose that there are several
student Perceptrons which learn from a teacher Perceptron.
When initial students’ vectors are randomly distributed,
it is shown that the generalization error of the averaged
student vector becomes smaller than that of one student
vector.'” In contrast with ensemble learning explained
above, ensemble learning in time domain uses only one
student who learns from a teacher. Ensemble consists of
vectors of the student at different times. A typical situation
in which ensemble learning in time domain is efficient is
when the student vector rotates around the teacher vector. In
this situation, by taking the average of normalized student
vectors, the direction of the averaged vector is closer to that
of the teacher vector than that of the student vector in any
instance.

*E-mail: uezu@Ki-rin.phys.nara-wu.ac.jp

In the previous study,'” we investigated time domain
ensemble learning for Perceptrons numerically and found
that learning is improved by taking average of student vectors
over different times. Further, in ref. 13, we analytically studi-
ed time domain ensemble learning for linear Perceptrons.

The main purpose of the present paper is to give a theory
for time domain ensemble learning for Perceptrons. We
adopt the Hebbian, Perceptron, and AdaTron rules as learn-
ing rules, and for both the input and output noise cases,
we obtain the differential equations for order parameters.
We obtain the precise formula for the overlap between the
teacher vector and the time averaged student vector for
t — oo limit as a function of the number of students to be
averaged. We compare the theoretical results with numerical
simulations and find that the theoretical results agree quite
well with the numerical simulations.

The paper is organized as follows: In §2, the formulation
of the time domain ensemble learning is given. In §3,
we derive differential equations for relevant quantities and
obtain asymptotic forms of overlap between the teacher
vector and the time averaged student vector. In §4, we give
numerical results. Section 5 is devoted to a summary and
discussion.

2. Formulation in Time Domain Ensemble Learning

We consider the supervised learning of a Perceptron in the
presence of noise. Let J and B be the student and teacher
vectors, respectively. We assume that these are N-dimen-
sional vectors. We also assume that |B| = 1. Here, |B| is the
norm of B. Let & be an N-dimensional example vector. We
assume that its component & takes +1 and is drawn
independently with the probability PE=1)=1—-P¢E =
—1) = 1/2. The output S generated by the student J for £ is
given by

S = sgn(J - §), ey
where J - & denotes the inner product of J and &, sgn(x) = 1
for x > 0, and sgn(x) = —1 for x < 0. When there is no
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noise, the output 7' generated by the teacher for & is given by
T = sgn(B - §). @)

In this paper, we treat the cases in which noise exists. We
consider the output noise and input noise. Let P be the
probability of 7 = 1. In the output noise model, P is given
by

1
P(y) = 3 [1 + ksgn(y)], 3)

where y = B - & That is, for y > 0, the probability of T = 1
is (1 + k)/2. In the input noise model, T is given by

T =sgn[B - (§+ 0], 4)

where each component ¢; of ¢ is assumed to be independ-
ently drawn from the Gaussian distribution of the mean 0
and the standard deviation o. Then, P is expressed as

P(y) = H (— g) )

where

H( )—/OODu and Du—d—ue_”z/2
7, SVmc

We adopt the following learning algorithm
1 1
t+— ) =JO+—nETFI|JI;J -&T1], 6
31+ ) = I+ AT 8T ©

where 7 is the learning rate and F is the learning rule and
is assumed to depend on |J|, J - & and T. We consider the
following three learning rules

Hebbian rule: F=1, @)
Perceptron rule: F = O(-T9), ®)
AdaTron rule:  F = |&- J|O(=TS), ©)]

where ®(x) = 1 for x > 0 and ®(x) = 0 for x < 0. As for the
order parameters, we adopt Q = J* and R =J - B. From
eq. (6), we obtain the differential equations for Q and R:®

do

5 =20 - OTF)z + 7{F e, (10)
dR— B TF 11
5 = NB-HTF)z. (11)

Here, we assume self-averaging'” and (-)z denotes the
average over examples and noises. Let us define J = |J],
J=J/J,and x = J - & Since F is expressed as F[J;Jx, T],
these equations are rewritten as

d
d—? = 2J (XTF[J;Jx, Tl) g + n*(F2 5 Jx, T,

dR
Tl nTFLJ;JIx, Tl)g.

In addition to Q and R, J = /0O and @ = R/J are also used,
and their equations are

12)

13)

2

Y GTFIx T + g—J (P I T (14)
do 17
ar = 7 (v —ox)TF[J;Jx, T]) 5
- or’ (F1: 0, T = (15)
2J2 A

The generalization error E is given by

E = (8(=ST)). (16)

Further, we consider a two time correlation function
q(t,s) = J(t) - J(5).") The differential equation for g(z,s)
with respect to s for # < s is given by

dq(t, s)

PR (X T($)F () g,
where x] = JGs) - & and ¥, = Jo) - & & is a sample given at
time s and (-)z, denotes the average over samples at time s.
Here we abbreviate as F(s) = F[J(s); J(s)x$, T(s)].

Now, let us formulate the time domain ensemble. We

a7

define the time averaged student vectors J(©) and 7(t) as
follows.

_ 1 E

J@) = E;J(H 1), (18)
= 1&s 1 &I+

Ji) = E;J(H 1) = E;J(I—Hi)’ (19)

where t; <th < ---
as follows.

< tg. The order parameters are defined

_ _ 1 &
RO=B-J0) =+ ; R(t + 1), (20)
o) = J)?

2 1 &
= 5 D 4+t + 1)+ F;J(t+t,-)2, 1)

i<j

a(t) = R (22)
Voo
= = 1 K ~
R =B -J1) = E;B J+1)
1 K
= Dol (23)
i=1
= = 2_3 q(l+li,t+lj) i
o0 =J0" =1 ; J(t+1)J(t + 1) Tx @
30 = X0 (25)

V Q)
In our previous study, we found that it seems that @(0) tends
to 1 for the Perceptron rule and @(0) tends to 1 for the
AdaTron rule as K — o0o.'!? In this paper, we derive the
asymptotic expressions for w(f) and @(¢) as t — oo for finite

K, and discuss the efficiency of the time domain ensemble
learning.

3. Differential Equations and Asymptotic Behaviors

In this section, first we derive differential equations for
q(t,s) with respect to s (> t) both in the output and input
noise models. And then, in order to obtain asymptotic forms
of w and ®, we study the asymptotic behaviour of g(f + f;,
t+1) and gt +t;,t +1)/[J( +1)J(t + t)]. In the below,
we give the differential equation only for g(z, s). See ref. 12
on differential equations for R, J, and w.

Now, let us study the output noise model, where
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1

P(y) =z [1 + ksgn(y)].

NS}

Then, we obtain the differential equation for g(z, s) as

dq(t,s) _ T 1T + ksgn(y,)] F o (s)
os 2

- [1 - kSgn(ys)]f—(‘?)}>x§,x§,yya

where  F_(s) = F[J(s);J(s)xi, +1] and F_ = F[J(s);
J(s)x5, =11, (), denotes the average over the Gaussian
distribution of X!, x!, and y, with ((x))?) = 1, ((x))*) = 1,
02 =1, () = g 9)/UOIG],  (y) = (@), and
(x}ys) = w(s). The initial condition for this equation is
q(t,1) = J(1).

The generalization error E = (®(—75))z is given by

1-k k
E(w) = ——4 —cos™ (w).
2 T

(26)

27)

By performing several integrations in eq. (26), we obtain
the differential equation for each learning rule. We omit the
details of the calculation and summarize the learning
behavior in each learning rule.

In the Hebbian rule, the differential equation for g is

oq(t, 2
qt.5) _ kn\/iR(t) for s > 1.
0s T

This case has been studied previously and the differential
equations for R and J have been solved analytically.'® The
solutions for R, J, and ¢ with initial conditions R(0) = 0,
J(0) =1, and ¢(t,1) = J(1)* are

2
R(t) = nk/ -1,
T
2
JO)= [1+n2t(1+—Kk*),
T

q(t,s) = kn\/gR(t)(s —H+J@)? fors>t.  (31)

(28)

(29)

(30)

From these solutions, it follows that lim,_, o ﬁ(t) =1.
In the Perceptron rule, the differential equation for g is

I(ts) _ kn o n qs)
% —mR(I) N fors >t (32)

The stationary state is given by

. _ o [7E@)
ENT T

Since wj < 1, learning fails.
In the AdaTron rule, the differential equation for g is

*_
wp =k.

q(t,s) = {J(t)2 + /S ds” g(t,s") exp[— /S ds’ f(s’)] } exp|:fs ds” f(s’”):|,

Thus, we obtain for t; < t,

dq(t, k
% = n[—E(w(S))q(t, 5) + ;Ra)J(s)\/ 1— w(s)z]

fors >t (33)

As t — o0, J — 0 for n < 2, J = constant for n = 2, and
J— oo for n>2. w— w) as t — oco. Here, w} is the
solution of dw/dt = 0 and is less than 1. As in the case of the
Perceptron rule, learning fails.

Now, we study the input noise model, where P(y) =
H(—y/o). Then, we obtain

aq(t, s)

as

- nJ(r)<x§ [H(— y—) Fo(s) — H(y—> ]—'_(S)D . (34)
o o XXysYs

The generalization error is given by

| "
E(w) = ;cos < (35)

1)
V14 02>.
For the Hebbian rule, the differential equations of order
parameters for the input noise model are obtained by those
for the output noise model replacing k by 1/v1+ o2
Therefore, we obtain lim,_, o, @(f) = 1.
In the Perceptron rule, the differential equation for g is

dqt,s) _ 1 ( R@®  q5s)
ds V2a\V1+062  J(s)

The stationary state is given by

) for s > 1. (36)

P L TR, oh= 37
PT T ek or = A

Thus, learning fails for ¢ > 0. In the AdaTron rule,'” the
equation for g is

dq(1,5) 7 V1+ 02— w(s)?
R T

(38)

As t — oo, J — 0 for n < 2, J = constant for n = 2, and
J— oo for n>2. w— w) as t - oo. Here, w} is the
solution of dw/dt = 0 and is less than 1. Thus, learning fails.

Now, let us derive the asymptotic forms of @(¢) and @(r).
In order to evaluate them, we have to solve the differential
equations for ¢(t,s). These equations have the following
form.

— nq(t, s)E(w(s)) for s > t.

d
75 49 = f(9)q(t,5) + 8(1, 5). (39)

Its solution for s > ¢ with initial condition g(t,t) = J (1)* at
s =t is given by

(40)

) —1 T =1
gt +t,t+ 1) = {J(t+t1)2+/ drg(t+t1,r+t+t1)exp[—/ duf(u+t+t1)“exp[/ dvf(v+t+t1)}-
0 0 0

(41)

We note that g(z, s) is the product of a function of ¢ and that of s. For the Perceptron rule, f(s) and g(z,s) are as follows.
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fo=——L V1+0? — o(s)’

Ui
27 J(s) g(t,s) = - R(@®)J(s) 7o
fo;C output and input noise models, 42) for input noise model. 47
U
8(t,8) = —=R(1) _
V2 Thus, it follows that as t — oo, J(t) — J*, f(t) — f*, and
for output noise model, 43) g+ a,t+ B) — g* for any constants « and S. In both the
n R(®) output and input noise models, for the Perceptron rule, these
g(t,s) = —m 7\/1_'__02 limiting values are all finite, but for the AdaTron rule, J* and
for input noise model (44) g* are 0. Then, we obtain for the Perceptron rule

On the other hand, for the AdaTron rule, these functions are lim gt + t1,t + 1) = <(J ) + g_*> el =) g_* , (48)
as follows. e f f

£(s) = —nE(a(s)) and for the AdaTron rule

for output and input noise models, (45) tl_lglo g+ n,14+0)=0. (49)
o(t,5) =1 f R()J(s) /1 _ w(s)? Thus, we consider two cases separately in the following
4 subsections.
for output noise model, (46)

3.1 Case of Perceptron learning rule
Let us consider the Perceptron rule. In this case, J* and g* are non zero. Then, we consider (). When t — 00, we obtain,

_ 1 &
lim R() = lim — D RGt+1) =R =J'o", (50)
i=1

=00

o 12 L& )
o= 2 T e kS

i<j

2 g1 .y K—1g" (J9?

I J* 2 S |Lf (l, t) S , 51
Kz;[( ) +f*}e < Tk (51)
o J*w*

lim w(?) = . (52)

1—00
2 &\ roon K-1g ()
= T2 4+ 2 e TGt _ 2
KZZ<( ) +f*) K f*+ K

i<j

In both output and input noise models, asymptotic values are calculated as

n
* , 53
/ V2T &)
* n K kN2
= 4
ml (%), (54)
_% = (J*0"), (55)
Thus, we get
11
lim g(t + 1,14 1) = (J*)Z{(w*)2 — 1= (@] eXP[—n Ao n)] } (56)
lim 00) = 0| @ + ~ 11— @11+ 2 Zexp[—n L - r)} (57)
=00 K K 4= Nz ool B

Therefore, we obtain the asymptotic form of the overlap between the teacher vector and the averaged student vector both in
output and input noise models as

a)*

lim @(r) = . (58)
o )2 l — ()2 E _ Li ¢
(@) + 1 <w>1[1+KZexp[ T n)”

i<j
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3.2 Case of AdaTron learning rule

In this subsection, we consider the case of the AdaTron rule in which J(#) — 0. Since J* and g* are zero, we consider '_cB(t).

When ¢t — oo, we obtain,
K

lim R() = lim — = o 59
Jim RO = Jim 2 ) e+ 1) =o', 9
.= 2 . qt+t,t+ 1) 1
1 N =— lim —— + —. 60
A 20 W%}ﬂummm+w K (©0)
For the AdaTron rule, g(z,s) is expressed as
8(t,5) = R(1)J (5)§((s)). (61)
Thus, we obtain
q(t+ 11,1+ 1)
im———
=00 J(t 4+ 1)J(t + 1)
I+ /’2"' Jx+t+1) . /’
=1 —— o+t t+t — [ d t+1t
tirilo{](;+;2) | TS| o(t + 11)g(w(t + 1 + 1)) exp ; uf(u—+t+1t)
) —1
xexp|:/ dvf(v+t+t1):| (62)
0
1 —1 . y
= [B(n, )+ / drB(t + 11, h)w*g(e*)e ™/ f}ef (=), (63)
0
Here, we define Thus,
o J+1) Jt+1) t+1>
B(t;,1,) = lim . (64) ! — _ / 4
=00 J(t + 1) T+t exp - dr’ ¢p(a(t))
This is calculated as follows. The equations for J(¢) and w(f) =11
have the following forms. = exp |:_ /0 drg(o(t +1+1 1))i|' (68)
dJ@) . .
= J(OPp(w), (65) From this, B(#;, 1) is expressed as
da) 1) —1
— = Y(w). (66) B(t],t;) = lim exp| — drp(w(t +t+ 1))
dt t—00 0
By solving eq. (66) we obtain w = w(¢). Using this solution, — e 1) (69)
J(t) is given by
" where ¢* = ¢(w*). Therefore, we get
J() = J(0)exp [ / dr’ ¢(w(t’)):|. (67)
0
im qit+t,t+ 1) _ e(.f*_¢*)([2_ll)|:1 B a)*g(w*)] w* g(w™*) . 0)
100 J(1 4+ 11)J(t + 1) =1 =S
Then,
= 2 g *g(w* K—-1ow"'gw* 1
f— 00 K2 o ¢* _f* K d)* _ f* K
Thus, we obtain
. = w*
tllm o(t) = . (72)
—>00 * ~ >k * 5 >k
izeq*—w)(z,—m | @8 K-logen) 1
Kz o ¢* _f* K ¢* _f* K
Now, we calculate relevant asymptotic values. First, we 0 k
treat the output noise model and obtain ¢F = 17(5 — 1> (E* - o'y 1— (w*)2>. (75)

£ = ", (73)

Now, we estimate w*g(w*)/(¢* — f*). From dw/dt = 0, we

k
¢ =n—y/1— (") 74)  obtai
g=n_ (@) (74)  obtain
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k'? *23/2_'72 5 % k * )2
;(1—(0))) —Ew E—;a)\/l—(w) . (76)

From this, we get

2k (1—(1—3)@*)2),/1—@*)2. 77

E* =

2 (1 + 02)

*\/ﬁ
¢*=n(ﬁ—1)[5*_‘” Lo~ (g3

From dw/dt = 0, we get

« 1 2 _ «\2 2
e n(l — (@) + ﬁ(w*)2> vito -y 2(“’ YT (s4)
Thus, 2 (1l + o?%) 2
Thus,
ot — fF = n<ﬁ — 1) <E* — Ea)*\/l — (a)*)2> + nE* (78)
’ i ¢ — f* (’7 1> |:E* w*y/1+0% — (w*)2:| + nE*
kn [ 1 =ML B 2 1
Tw* w* 5
. 1 1+ 0% — (w*) I,
Therefore, we obtain =—N—=—g. (85)
y w* (1l + o2) w*
o'gw*) L, 20 )
b — (07)". (80)  Therefore, we obtain
. . . . w*g(w") £12
Next, in the input noise model, we obtain & = (w")". (86)
f = 1) By substituting asymptotic values calculated above into
. nV1+ 02 — (w*)? %2 egs. (70), (71), and (72), we obtain in both the output and
T 1+ o2 (82) input noise models,
qit+1,t+10) o2 o2 g
_— = 1-— —Z(tr—1)|, 87
lim iy = @ = @)Plexp| — (= 1) (87)
lim () = @+~ [1 - @11+ =3 exp| £ 5~ 1) (88)
t—00 K K i<y w* / ! ’
— a)*
lim o(f) = (89)
11— 00

K

1 2 & '
(@) + —[1 — (@*)*] {1 + X ZeXp[— o (# — ti)i| }

i<j

In the above two subsections, we obtained the asymptotic forms of @ for the Perceptron rule (58) and ® for the AdaTron
rule (89) as + — oo in both the output and input noise models. These two quantities are expressed by one formula as

&(K) =

w*

(90)

1 2 —a(ti—t;
(0*)? + i (w*)2]<1 + EZe & >>

i<j

where a = (n/+/2m)(1/J*) for the Perceptron rule and a = g*/w* for the AdaTron rule.
Now, let us consider the behavior of this quantity @(K) as a function of the number of student vectors to be averaged K, in
both the output and input noise models. We assume that #; = i x Ar. Then, the summation in &(K) is calculated as

1 1 — e—uAt(K—l)
—ati—t;) _
Ze o= eali—1 |:K —1- ealt—1 :| oD
l<_]
Therefore, we obtain
~ w*
o(K) = . (92)
, 1 ) 2 1 1 — e—aAK-D)
SR R | T
Thus, as K — oo we obtain
lim &(K) = 1. 93)
K—o00

That is, the direction of the averaged student vector tends to the direction of the teacher vector as the number of student

vectors to be averaged increases.
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Fig. 1. Output noise model. = 1, k = 0.5. Time s dependence of g(r,s)  Fig. 3. K dependence of &(K). n =1, At =0.1. Curves are theoretical

for s > t. t = 10. Curves are theoretical results (RKG) and symbols are
numerical results (N = 1000). Upper panel. Solid curve and +: Hebbian.
Lower panel. Solid curve and x: Perceptron, dashed curve and s:
AdaTron.

T T T T T
1+ Xy x X XX x 3
X XX 72X
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w5
N~
e
04 8
02 X, .
e
X****‘*
K K.
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S
Fig. 2. Input noise model. n = 1, o = 0.5. Time s dependence of ¢(z,s)

for s > t. t = 10. Curves are theoretical results (RKG) and symbols are
numerical results (N = 1000). Solid curve and x: Perceptron, dashed
curve and *: AdaTron.

4. Numerical Results

In this section, we give results of numerical integrations
of differential equations by the Runge—Kutta—Gill (RKG)
method and results of numerical simulations.

In Figs. 1 and 2, we display the time dependence of g(z, s)
in the output and input noise models, respectively. In Fig. 3,
we display the K dependence of @(K) in the output and

results and symbols are numerical results which are the average of 10
samples (N = 1000). Solid curve and +: Perceptron, dotted curve and x:
AdaTron. Upper panel. Output noise model. kK = 0.5. Lower panel. Input
noise model. o = 0.5.

input noise models. Theoretical results agree with numerical
simulations quite well.

5. Summary and Discussion

In this paper, we studied the time domain ensemble on-
line learning of a perceptron under the existence of input
and output noises. We considered three learning rules, the
Hebbian, Perceptron and AdaTron rules. In the Hebbian rule,
learning succeeds in the sense that the student vector tends
to the teacher vector. So, we focused on the study of the
Perceptron and AdaTron rules. We obtained the asymptotic
forms of the two time correlation functions g(t + #1,¢ + )
for the Perceptron rule and g(t + 1, + 1) /[J(t + t1)J(t +
ty)] for the AdaTron rule in both the input and output noises
as t — 00, eqs. (48) and (70), respectively. Using these
forms, we gave the precise formula for the overlap between
the teacher vector and the time averaged student vector for
the Perceptron and AdaTron rules in both the input and
output noises, eq. (90). By this formula, we conclude that
the direction of the averaged student vector tends to the
direction of the teacher vector as the number of student
vectors to be averaged increases.

We performed numerical simulations and estimated ¢(z, s)
and w(K) for the Perceptron and AdaTron rules in both the
input and output noise models. We compared these results
with theoretical ones, and confirmed that the theoretical and
numerical results agree quite well.
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In this paper, we considered the situation that the teacher
vector suffers from external noise but the student vector does
not. Our present analysis can be applied to the situation that
both the teacher and student vectors suffer from external
noise. This study will be reported elsewhere.
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