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We analyze the on-line learning of a Perceptron from signals produced by a single Perceptron suffering
from external noise or by two independent Perceptrons without noise. We adopt typical three learning
rules in both single-teacher and two-teacher cases. For the single-teacher case, we treat the input and
output noises and for the two-teacher case, we assume that signals are given by two teachers with a
definite probability. In the single-teacher case, in order to improve the learning when it does not succeed
in the sense that the student vector does not converge to the teacher vector, we use two methods: a
method based on the optimal learning rate and an averaging method. Furthermore, we obtain an
asymptotic form of the generalization error using an optimal learning rate for the three learning rules, and
we estimate noise parameters using the simulation data by the averaging method. In the two-teacher case,
for the Hebbian rule, we give analytical solutions of order parameters. Furthermore, we estimate noise
parameters using the Perceptron rule by the averaging method. The theoretical results agree quite well

with the numerical simulations.
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1. Introduction

We study the on-line learning by a single Perceptron”
from signals produced by a single teacher or by two teachers.

In the single-teacher case, we assume that the data is
contaminated by noise and we adopt the Hebbian,?
Perceptron,” and AdaTron® rules as learning rules.¥ There
have been many studies that focus on the case of a single
teacher.’~!?) The main purpose of the present paper is to offer
some methods of identifying the teacher vector and
estimating noise parameters when the learning is not
successful in the sense that the student vector does not
converge to the teacher vector.!” In the two-teacher
case, few previous studies exist.!) In this case, we study a
situation in which signals are given by two teachers with a
definite probability, and by adopting the Hebbian, Percep-
tron, and AdaTron rules as learning rules, we then estimate
the probability. The results are as follows: In the single-
teacher case, when the learning fails, the teacher can be
identified using the optimal learning rate or by taking the
average of the student vector at different times. In particular,
noise parameters can be determined using the averaging
method. Furthermore, we can obtain an asymptotic form of
the generalization error using an optimal learning rate for the
three learning rules. In the two-teacher case, the student
vector approaches the two-dimensional space ¥ spanned by
the teacher vectors for the Hebbian rule. On the other hand,
for the Perceptron and AdaTron rules, the student vector
does not approach X, but the time-averaged student vector
does. Using this fact, by the averaging method we estimate
the probability that the signals are sent by the teachers in the
Perceptron rule. Furthermore, both in the single-teacher and
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two-teacher cases, in the averaging method, we find that the
behaviors of the convergence of learning are quite similar
when the starting time at which the average is taken is larger
than the time at which the student vector starts to rotate
around the teacher vector.

The paper is organized as follows: In §2, the formulation
in the case of a single teacher is given. In §3 and §4, the
cases of output noise and input noise are analyzed,
respectively. In §5, the formulation and analysis of the
two-teacher case are given. Section 6 is devoted to a
summary and discussions.

2. Formulation in Single-Teacher Case

We consider the supervised learning of a Perceptron in the
presence of noise. Let J and B be the student and teacher
vectors, respectively. We assume that these are N-dimen-
sional vectors. We also assume that [B| = 1. Let & be an N-
dimensional example vector. We assume that its component
&; takes £1 and is drawn independently with the probability
P=1)=1—-PE=—1)=1/2. The output S generated
by the student J for & is given by

S = sgn(J - §), ey

where J - & denotes the inner product of J and &, sgn(x) = 1
for x > 0, and sgn(x) = —1 for x < 0. When there is no
noise, the output T generated by the teacher for & is given by

T =sgn(B - §). )

In this paper, we treat the cases in which noise exists.
We consider the output noise and input noise. Let & be
the probability of 7 = 1. In the output noise model, & is
given by

1

PQy) ==

=3

where y = B - & That is, for y > 0, the probability of 7 = 1
is (1 + k)/2. In the input noise model, T is given by

(1 + ksgn(y)), 3)
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= sgn(B - (§ + 7)), @

where each component ¢; of ¢ is assumed to be independ-
ently drawn from the Gaussian distribution of the mean 0
and the standard deviation o. Then, & is expressed as

P(y)=1- H(3>, )
o

where H(y) = fyoo Du and Du = (du/\/27r)e’“2/2. We adopt
the following learning algorithm

1 1
,(H N) —JO+ S nETFIILT £ 7] (©)

where 7 is the learning rate and ¥ is the learning rule and is
assumed to depend on |J|, J - & and T. Here, |J| is the norm
of J. We consider the following three learning rules

Hebbian rule: £ =1, @)
Perceptron rule: ¥ = O(-T5), (8)
AdaTron rule: £ = |&- J|O(=T9), 9)

where ®(x) = 1 for x > 0 and ®(x) = 0 for x < 0. As for the
order parameters, we adopt Q =J? and R =J - B. From
eq. (6), we obtain the differential equations for Q and R:®

d

d? T - OTF)z + n*(FDz, (10)
dR— B TF 11
5 = NB-HTF)z. (11)

Here, we assume self-averaging'? and (-)z denotes the
average over examples and noises. Let us define J = |J],
J= J/J, and x = J - & Since ¥ is expressed as F[J;Jx, T1,
these equations are rewritten as

% =2 J (XTF[J;Jx, T g + n* (F2[J:0x, Tz, (12)
dR
P nOTFJ;0x, Tl z. (13)

In addition to Q and R, J =
and their equations are

/O and w = R/J are also used,

2
N T FJ;Jx, Tl g + ;’J (F2T %, T = (14)

do 7 wn? 2
Frie j((y wx)TF[J;Jx,T]) g — 27 (F7;Ix, T -
(15)
The generalization error E is given by
E = (O(=S8T))5. (16)

The probability distribution P(x, y) of x and y is given by the
Gaussian distribution with (x) =0, (y) =0, ¥*) =1, ()?) =
1 and (xy) = o,

P(x,y) = (o 4y — 2wxy)i|.

1 1
21 — o2 p[ 20— o)
a7
Thus, the average over examples & of A, (A)g, is replaced
by (A),, = [ dxdyP(x,y)A. The average over noise ¢ of a
quantity A(T) is given as follows:
(A)r = A(P(y) + A=D1 — P(y))

(18)
=A(=D + P(AL) — A(=1)).

3. Output Noise Model

In the output noise model, P(y) = (1/2)(1 + ksgn(y)).
Then, the average of A(T) over noise is given by

1 k
(A), = §(A+ +A)+ E(A+ — A_)sgn(y)

= A + kA, sgn(y),

19)

where
Ay =A(1), A_=A(-1),
1
A = E(A+ +A_y),
and
dS - (A+ —A_ 1)
Since

(TF)e = (TF)s + k(TF)ys sgn(y) = Fas + kF s sgn(y),

we obtain
dQ lrod lrod
E =2nJ(x{Fus + kFs Sgn(y)}>x,y
+ 1 (FI+ kF2L sen(y)), (20)
dR
T N{Fas + kFssgn(y)}) - (21)

By performing the average over x and y, we get equations
for Q, R, J, and w. The generalization error E = (®(—T75)) g
is given by

1—-k &k 1
E=—+ —cos (w),
2 b4

k
= Emin + —cos™ (),
T
where E., = (1 —k)/2 is the minimum value of the
generalization error. Then E=E—E,,is expressed as
-~k
E = —cos™ (w). (22)
T
In the next subsection, we study the learning behavior
when the learning rate 7 is constant.

3.1 Case of constant learning rate

We summarize the learning behavior in each learning
rule.

In the Hebbian rule, the equations for R, J, and w are

dR 2

== nk\/;, (23)
dJ 2 n?

— = nky/—w + 2 (24)
— \f (1-0”) — ﬁ. (25)

This case has been studied previously and these equations
have been solved analytically.m The solutions for R, J, and
w with initial conditions R(0) =0, J(0) =1, and w(0) =0
are
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Fig. 1. Time dependence of w in output noise model. k = 0.5. Left panel: Constant learning rate, n = 1. Theoretical results (RKG): solid curve: Hebbian,

dashed curve: Perceptron, dotted curve: AdaTron. Simulations (N =

Perceptron, *: AdaTron.

2
R = nk,/—t,
T

(26)
2
J = /1+n%<1+ k%) 27)
o422

Thus, J — oo and w — 1 as t — oo. Therefore, learning
succeeds in the sense that the student vector converges to the
teacher vector, even if noise exists. In the Perceptron rule,
the equations for J and w are

R_ D k—w (29)
dt—«/27r @

YV oy L (LK 30
o= =@k 21(2 ~sin (w)>, (30)

_
dt — 2mJ 272 \2
From these equations, we obtain the following stationary
state:

do (1 —a?) — ro (1 - %sin_l(a))) 31)

1 k.
— — —sin” (k)

. T2 m
PENT T

Since wp < 1, learning fails.
In the AdaTron rule, the equations for J and w are

dR &k 1 &k
— =Vl —w? —nol| = —=sin"' (@) ),
d = 2w

o _ ,7,<ﬁ _ 1) (l _ S (VT —a? + sin_l(w))>, (33)

*_
wp = k.

(32)

dt 2 2
dﬁ _ kj(l — )2
dt T
’72 1 k 1
_?w(i__( V1 —@? +sin~ (w))). (34)
T

The equation for w does not include J. The factor

G — S (0V1—?+ Sinl(a))))

1000); +: Hebbian, x: Perceptron, *: AdaTron. Right panel: Optimal learning rate.
For t < 50, n = 1 and for t > 50, n = nep(#). Theoretical results (RKG): dashed curve: Perceptron, dotted curve: AdaTron. Simulations (N =

1000); x:

in the equation for J is positive for 0 <k <1 and 0 <
w < 1. Thus, as t - oo, J — 0 for n < 2, J = constant
forn=2and J — oo for n > 2. w — w} as t — oco. Here,
wy; is the solution of dw/dt = 0 and is less than 1. As in the
case of the Perceptron rule, learning fails.

As shown in the left panel of Fig. 1, in each learning rule
there is agreement between the simulation results and the
theoretical ones obtained using the Runge-—Kutta—Gill
(RKG) method.

As seen above, learning fails for the Perceptron and
AdaTron rules. That is, @ does not tend to 1. In the following
subsections, we consider two methods to improve the
learning for these two cases. First, we introduce the time-
dependent learning rate n and second, we take the time
average.

3.2 Optimal learning rate
Now, let us discuss the optimal learning rate nopc. Nope 1S
defined by the following relation:®

y 3 (d
an \dt

7 is n/J for the Hebbian and Perceptron rules, and is n for

the AdaTron rule. Since E = (1 —k)/2 + (k/m)cos™ (w),
the relationship is equivalent to

v d [d
t>0: —|—w]=0.
on \dr

For each of the three learning rules, it is shown that w — 1
when 7,y is adopted. See Appendix A. In the right panel of
Fig. 1, we display the numerical results for @ in each rule.
We found excellent agreement between the theoretical and
numerical results. In the theoretical calculation, we used the
asymptotic forms of 7, Topt- In Table 1, the time dependences of
the optimal 7, Nopt and E,y, where the latter is E obtained using
Nopt for large 7, are given for each learning rule. In Table II,
we summarize the asymptotic behavior of w, E, and J for a
constant n and for the optimal 7, 1oy, for each learning rule.
Here, nop = ﬁop[|J | for the Hebbian and Perceptron rules,
and 7pt = nopt for the AdaTron rule.

From Table I, we note that the asymptotic form of Eopl is

(35)

(36)
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Table I. Asymptotic form of optimal learning rate and Eopt for # >> 1 in output noise model.

Learning rule Hebbian Perceptron AdaTron
~ 1 /n . . _ V2 1 3 _ 2 174 _3/4
Nopt (1) %\/; 22mt7 " (k=1), Tt k<1 5 k=1), m t k<1
7 1 4 1—k 4 2a -\
E 12 -tV k=1, [J—rk<l st k=1, (—=—) ' *<1
opt T - ( ) - (k<1 3 ( ) P (k<1
Table II. Asymptotic behavior with constant n and 7o in output noise 1L
model for k < 1. D =-SN"Ta, (37)
L Z; '
Learning rule Hebbian Perceptron AdaTron =
Asymptotic behavior @ —=>1  @—>wp (<) - o) (<D where 0 <t < <--- <. In Fig. 2, we display the
with E—0 E— Ep E — E} results of this averaging method.
n = constant (=1) J — 00 J—Jp J—0 Since J — J} for the Perceptron rule, we used the time-
Asymptotic behavior @ —> 1 o—1 o—1 averaged vector (J) of J only. As shown in the left panel of
with E—>0 E—>0 E—>0 Fig. 2, (B - (J))/|{J)| increases and seems to approach 1 as
1 = Topt J— o0 J—0 J—0 the number of samples in the average, which is denoted by L

proportional to t~!/? for the Hebbian and Perceptron rules,
whereas it is proportional to t~!/4 for the AdaTron rule for
k < 1. That is, the convergence speed of the Hebbian rule
and that of the Perceptron rule are comparable, but that of
the AdaTron is much lower than those of the Hebbian and
Perceptron rules.

Next, we study the averaging method used to improve
learning.

3.3 Time averaging method

In the Perceptron rule, w — wj and in the AdaTron rule,
w — wjy as 1 — 00, Both wp and w} are less than 1. Thus,
we consider that J = J/J rotates around or is scattered
around B as time progresses. Therefore, we expect that by
taking the time average of 7, the direction of the time-
averaged vector (J) of J tends toward the direction of /Ié’ as
the number of samples in the average increases. Here, (J) is
defined by

1 T T T

XX X X X X X X
% X DDDDD
><><><DDD
0.8 - x gB i
o
X O
o
al
0.6 - i
E'BD,,,E‘,D rrrrr S S
ol o
@ | Freguxi
B
04 H 1
02 ]
0 1 1 1
0 50 100 150 200
t

in eq. (37), increases. For the AdaTron rule, since J — 0,
we used both (J) and (J), and found that we could get w —
1 using only (J), as L increases.

In Fig. 3, we display the dependence of the convergence
of w on the starting time #; when the average is taken. As can
be seen in the right panel of Fig. 3, the  — #; dependences
are quite similar for #; = 5, 10, 25, 50, 100, and 150 except
for t{ = 0. This result is attributed to the fact that the
student vector already starts to rotate around the teacher
vector for these values of #; as is seen in the left panel
of Fig. 3. On the other hand, for #; = 0, where all data are
used to take the average, the convergence is slower than for
other cases because w is still approaching wy. We also
obtained similar results using the AdaTron rule. Further-
more, we can estimate k from the relation [(Jp)| =k or
[(J4)| = w} in the Perceptron or AdaTron rule, respectively.
Indeed, k£ was esﬁmated as 0.501 and 0.504 whqr\) k=0.5
using the value |(Jp)| in the Perceptron rule and |(J4)| in the
AdaTron rule at r = 1000, respectively.

In the next section, we study the input noise model.

1 T T "
i 8
i
08 | o |
N =
1 o + +
XX x s Otk * * e
1 - x ??EDED FUETEEF +
‘: DDDDDDDDD
06 D00Oooooooot
J %
x
: x
0.4 | X x 3
L XXXxxxxxxxXxxxxxxxXxXx
02 |
L]
L]
‘"
0 NSy - -
0 50 100 150 200

Fig. 2. Averaging method for Perceptron and AdaTron rules in output noise model. k = 0.5. The average is taken for # > 50; that is, #; in eq. (31) is 50.
Symbols denote simulation data for N = 1000. x: Perceptron (not normalized), square: AdaTron (normalized). Curves denote the theoretical results for
n = 1 without averaging. Dashed: Perceptron, dotted: AdaTron. Left panel: Time dependence of w. Right panel: Time dependence of J. Data without
averaging for n = 1 are also depicted. +: Perceptron; closed square: AdaTron. The theoretical results for J; (dotted line), Jjwy (dashed line) and wy

(dashed-dotted line) are depicted in the right panel.
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Fig. 3.

Averaging method for Perceptron rule in output noise model. k =

0.4 I I I I
0 10 20 30 40 50

r— N

0.5. #; dependence of convergence. Symbols denote simulation data for

N = 1000. Left panel: t dependence of w. *: ; = 0, closed circle: #; = 5, triangle: #; = 10, square: t; = 25, x: t; = 50, closed square: #; = 100, circle:
t; = 150. Right panel: ¢ — t; dependence of w. Each symbol corresponds to the same value of #; as in the left panel except for the case of #; = 50, in
which data are connected by a solid line without symbols. Furthermore, for #; = 0 and 5, symbols are connected by a dashed line.

4. Input Noise Model

In the input noise model, P(y) = 1 — H(y/o). Then, the
average of A(T) over noise is given by

o

(A), = Ay — (A, —A_)H<f;> —A, — 2AaSH(y>. (38)

Since
(TF), = (TF), — 2<T5f>asH(X)
? (39)
—F, - 231'5H<y>,
o
we obtain
o _ 2nJ<x{3—'+ - 2J‘-‘SH<X) }>
dr o xy
+ n2<3~‘2+ - 2?’§SH<§)> (40)
dR y )
ar _ n<y{¢+ _ 2}‘SH(—) }> . @1
dt ) ) sy

By taking the average over x and y, we get equations for Q,
R, J, and w. The generalization error is given by

1 w
E= - cos! (ﬁ) (42)
The minimum value of E is
Enmin = ! cos™! (1) (43)
AW =
Thus, £ = E — Epip is
E=E— lcos’1 (L) (44)
AW

In the next subsection, we study the learning behavior when
the learning rate n is constant.

4.1 Case of constant learning rate
In the Hebbian rule, we obtain

R [ 2

= s 4
dt (1 +02)n’ “3)
dJ 2 n?

Y2 e+ 46
& Vra+o)™ o (46)
do 71 2 5. wn?

ey Sy N 47
i N raron T T “7)

This case has also been studied previously, and these
equations have been solved analytically.' These equations
and their solutions can be obtained from egs. (23)—(28),
replacing k by 1/+/1 4+ 02. Thus, J — oo and w — 1 as
t — oo. Therefore, the learning succeeds even if noise
exists. In the Perceptron rule, we obtain

dR n 1

G =75 =) @
W n (L _ 1) LA (L) “9)
dt V27 \V1+ o2 27 V1+o2)

do n 1-0o° on? 1 w

dar /27(1 + 02) 22 cos <\/1 + 02>. 0

From these equations, we get the stationary state as

1 2 1 1
= to L COSI<1+2>, w;‘, = ﬁ (51)
(e} o

Jp= 5

o V21
Thus, learning fails for o > 0. In the AdaTron rule, we
obtain

dR  nJ V1+ 0?2 —w?
dt 7 1402 e

d/ nJ (n 1
d 7 \2

» w
x {cos
{ (\/ 1402

(52)

> w\/1+02—w2}
- ,  (33)
1402

do_ (1 pylp)Yitoe -«
dt 2 (1l +o?)

2
_ T wcos™ <L> (54)
2 V1 + 02
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Fig. 4. Time dependence of w in input noise model. o = 0.5. Left panel: Constant learning rate. n = 1. Theoretical results (RKG); solid curve: Hebbian,

dashed curve: Perceptron, dotted curve: AdaTron. Simulations (N = 1000); +: Hebbian, x: Perceptron, *: AdaTron. Right panel: Optimal learning rate.
Fort < 50,7 =1 and for t > 50, n = nep(#). Theoretical results (RKG); dashed curve: Perceptron, dotted curve: AdaTron. Simulations (N = 1000); x:

Perceptron, *: AdaTron.

Table III. Asymptotic form of optimal learning rate and Eopl for 7 > 1 in input noise model for o > 0.

Hebbian Perceptron AdaTron
~ 1 2 1 2
Topt () \ wt’l 277(1 + o)~} al+o )171
o
5 1+0° - 1+02 cos-! 1 - (14 0?7 cos-! 1 o P
opt 4o 2 \J/I1+ o2 203 * ftroz) 1+

The equation for @ does not include J. The factor

o1+ 0% — &?
1+ o2

o w
COS —
(«/1 +02>

in the equation for J is positive for 0 > 0 and 0 < w < 1.
Thus, as t — 0o, J — 0 for n < 2, J = constant for n =2
and J — oo for n > 2. w — w} as t — oo. Here, wj is the
solution of dw/dt = 0 and is less than 1. Thus, learning fails.

As shown in Fig. 4, in each learning rule the agreement
between the simulation results and the theoretical ones is
very good.

Since learning fails for the Perceptron and AdaTron rules,
in order to improve the learning, we consider the optimal
learning rate and the averaging method.

4.2  Optimal learning rate

The behaviors of w and J in the the limit of # — oo in the
three rules are the same as in the case of the output noise
model as shown in Table II. See Fig. 4. In Table III,
asymptotic forms of optimal learning rate and Eopt for t >
1 in the input noise model are shown. ~

From Table III, we note that the asymptotic form of Ey is
proportional to t~! for the three learning rules.

4.3 Averaging method

As in the output noise model, w tends to w*, which is less
than 1, in the Perceptron and Ada:l:ron rules. Therefore, we
take the time averages of J and J for the Perceptron and
AdaTron rules, respectively. As shown in Fig. 5, w for the
averaged vector increases and seems to approach 1 as L

increases. In Fig. 6, we display the dependence of the
convergence of w on the starting time #; when the average is
taken. As seen in the right panel of Fig. 6, the t—1
dependences of w are quite similar for #{ = 50, 100, and 150,
but the behaviors of w are different for r; = 0, 5, 10, 15, and
25. The reason is the same as that in the case of the output
noise model; that is, for r; = 50, 100, and 150, the student
vector already starts to rotate around the teacher vector,
whereas for t; =0, 5, 10, 15, and 25, w is still approaching
wp, as seen in the left panel of Fig. 6.

We obtained similar results using the AdaTron rule.
Furthermore, we can estimate o from the relationship
|(Jp)| = @} and |(J4)| = . When o = 0.5, we estimate
0 =0.498 and o = 0.496 in the Perceptron and AdaTron
rules at + = 1000, respectively.

5. Two-Teacher Model

5.1 Formulation of two-teacher model

We consider the case in which signals are given by two
teacher Perceptrons. Let B; and B, be the N-dimensional
teacher vectors. For simplicity, we assume B; and B, are
orthogonal to each other and are normalized, By - B, =0
and |By| = |B;] = 1. Let & be an N-dimensional example
vector. We assume that its component &; takes 1 and
is drawn independently with the probability P(§ =1) =
1—PE=—-1)=1/2. The output 7; of B; for & is
given by

T, =sgn(B;- &, i=1,2. (55)

Furthermore, we assume that the student receives a signal
from B, or B, randomly. Let r; be the probability that a
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signal is from the teacher B; for i = 1 and 2. Then, r; +r, =
1 holds. Let J be the N-dimensional student vector. The
output S of the student J for & is given by

S =sgn(J - &).

The learning algorithm is given by

(56)

1 1
J(t—i— N) = I+ ETFIILT 6 T] (5T)

where 7 is the learning rate and ¥ is the learning rule.
The order parameters are Q = JPand R, =J-B; (i=1,2).
The generalization error E is calculated as

E = (0(=ST)) = %[rcos_1 w1 + (1 —r)cos ' wy], (58)

where w; = R;/J (i = 1,2) with J = |J|. We also obtain the
differential equations for Q, R and R, for each learning rule.
In the following, we study the learning for each rule.

In the Hebbian rule, we get

- n\/—gr, (59)
i r,\/ga —n, (60)
Y- n\/z{rwl =P+ L (61)
% - g\/g[r(l — o)) — (1 = Doy, ] — ‘;‘Trf (62)
%—g\/%[(l - —a)g)—rwlwz] _0;277722, (63)

where r = r;. Defining Q2 = rw; + (1 — r)w; and R = JQ,

we obtain
dR \/E i} .
a - W
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(65)

do 12 )
— =2n,/—R ,
dr 7 b4 o

where Qf, = 2+ (1 — r)%. These equations are solved
analytically and solutions with R;(0) = R,(0) =0 and
000) =1 are
2
Ry =n (66)
= n[(l — e, (67)
R= n\/‘Qj{,t (68)
2 *
0= r/nQHt + Pt + 1, (69)
2
J= — QP+t + 1, (70)
b4
n\/jrt
T
w) = , (71)
2
\/rﬂQ;’;tZ +nr+1
b4
2
n.|—( —nrx
b4
wy = . (72)
2
\/nZ—Q,’i,tz +n%t+1
b4
Thus, the generalization error is given by
\/E
n |—rt
E=—|rcos
2
\/nznﬂ}k{tz +n2t+1
(73)
2
n [—(1 —r)t
-1 4
+ (1 —r)cos

2
/nZ—Q;;ﬂ + P41
b4

Furthermore, we obtain J — 00, w1 — wj;, w2 = ©},,

Q— Qy and E — Ej; = (1/m)[rcos™ wf, +
(1 —rycos™' wj;,] as t— oo. Here, wj;, and wj, are
defined as
’
*
Wy %,.2 Iy )2 Q*
N 1—r _L—=r 74)
Wy 2 O
\/r2 +(1 =7 H

Since (a);“)2 + (a)im)2 =1, 7 (= J/J) tends to the plane X,
which is spanned by B; and B;. In Fig. 7, we display the
numerical and theoretical results. From the figure, we note
that the numerical results agree with the theoretical ones
very well, although there exists a small fluctuation in the
simulation because the student cannot learn from both
teachers. To eliminagg fluctuations, it is useful to take the
time average of J, (J). We confirmed that this procedure
really works and that the fluctuations are reduced. Using
this method, we can obtain the vector (J) that lies on X.
We denote this using (.L u). If we can find another vector
on X independent of (Jy) using the simulation, we can
identify B; and B;.
In the Perceptron rule, we get

R ) (75)
— = r— wi),
dt  2n :
B (76)
d[ 27[ 2)s
d e+ (1 = on— 114 F (77)
r —r -~ Lo
dr J_ ! »2 ATy
dw; n 2 7720)1
— = 1— - - — E, (78
dr «/271] [ =) = A =nwie] == E, - (78)
da)2 772(1)2
1 —r)(1— - — 79
- J_ = [0 =0~ ) — o] = S E. (79)
The stationary states for w; and w, are obtained as
wpy =71, wpy=1-—r. (80)
The stationary state for J, Jj, is given by
V/2mn
Jy=——E(@), 81
P aa-nt? ‘1

where E(r) = (1/m){rcos™' (r) + (1 — r)cos™' (1 — r)} is the
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generalization error for ¢+ — oco. As shown in Fig. 7, the
theoretical and numerical results are in close agreement,
although the fluctuation in the simulation is larger in this
case than in the case of the Hebbian rule. This is because J
does not approach the plain X, but rotates around both B;
and B, with angles cos™! 7 and cos™!(1 — r), respectively.
Therefore, if we take the time average of J, (J) will
converge in ¥ and w; converges to wy;; = ri//r? + r3 for
i = 1,2 as the number of samples in the average increases.

Figure 8 shows this to be the case. In Fig. 9, we display
the dependence of the convergence of w; and w, on the
starting time #; when the average is taken. As seen in the
right panel of Fig. 9, the r — #; dependences are quite similar
for 1 =25, 50, 100, and 150 except for #; =0, 5, and 10.
This result is attributed to the fact that the student vector
already starts to rotate around the teacher vectors for #; =
25, 50, 100, and 150, whereas for t; = 0, 5, and 10, w; is still
approaching wj ;. Furthermore, getting the value of |(j)|
from the simulation, we can numerically determine r. Let us

o~

denote (J) and (J) using (Jp) and (7[)), respectively. From
the relationship |(7p)| = Qj;, we estimated r = 0.905, 0.648,
and 0.618, when r = 0.9, 0, 6, and 0.52, respectively. As r
decreases, the discrepancy between the estimated r and
the true value of r becomes larger. Since (Jp) is proportional
to (7;,) obtained using the Hebbian rule, we need another
vector independent of 7;, on ¥ in order to identify B,
and B,.
In the AdaTron rule, we get

de r 5

—a;'==nJ[;,/1 —wvl——le], (82)
dR2 1—r B

dt=nJ|: J1—w —w2E1|, (83)

& (1T

a " 2

r
X[E——wl,/l—w%—

T

1—r
N 2l, (84
. w) w2:| (84)
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— ’7(1 - g) %wlwgm,
- 77<1 —g)iw]wg l—a)%.

For the stationary states of w; and w,, we obtain the
following relationship:

(85)

(86)

= p. 87)
W}
From this, we get
. (1 — rw?
W, = Al (88)

Jr =200

w)y ; and w} , are determined by eq. (87) and the following
relationship:

Nt n *
2EA=p{1_<1_2>(a)Al +Cl)A22)}, (89)
where

1
E; = —{rcos " (w} )+ (1 — r)cos™ ()}
- , ,

Furthermore, we obtain for ¢ > 1

Yo _(1=1)s2q
a=(1-3) 50— e

It is proved that w} ;2 + },? < 1 for 0 < r < 1. Thus, as
t— o00,J — 0forn <2, J = constant for n =2, and J —
oo for n > 2.

As shown in Fig. 10, the theoretical and numerical results
agree very well, although the fluctuation in the simulation
is larger in this case than in the case of the Hebbian rule.
This is because J does not approach the plain X but rotates

(90)

around both B, 1

and B, with angles cos™ wj;, and
cos™! w} ,, respectively. We expect that the time average

of J, (Ja), tends to the plain ¥ as 7 — oo. From Fig. 10, it

seems that B; - (J4) tends to @y /(@ D7+ (@} ,)? and JA

tends to /(@ 1)2 + (@}, 2)2 However, it turned out that (J 4)
did not converge in X. Therefore, it is difficult to identify B,

and B, numerically.

As for the dependence of the convergence of w; and w; on
the time t;, we obtained the same result as that in the
Perceptron rule. That is, when ¢, is larger than the time when
the student vector starts to rotate around B; and B,, the
t — t; dependences of w; are quite similar. See Fig. 11.

6. Summary and Discussion

First, we summarize the results of the single-teacher case.
We studied the output and the input noise models using the
Hebbian, Perceptron and AdaTron learning rules. Since we
obtained almost the same results in the output and the input
noise models, the following summary is for both cases
unless otherwise mentioned explicitly. In the Hebbian rule, it
has been found in a previous study'® that learning succeeds
in the sense that the student vector converges to the teacher
vector even if noise exists. On the other hand, in the
Perceptron and AdaTron rules, learning fails, but using the
optimal learning rate, we proved that w — 1 as t — oo in
the three learning rules. In the Perceptron and AdaTron
rules, we found that @ converges to a value less than 1 as
t — oo. This implies that the student vector rotates around
the teacher vector with a constant angle. Thus, by taking the
average over time, we expected that the direction of the
student vector would converge to that of the teacher vector.
The numerical results supported this speculation. Further-
more, using the averaging method, we estimated the
parameters that characterize noise: k in the output noise
and o in the input noise. Furthermore, we studied the starting
time (#;) dependence of the convergence of learning. We
found that the behaviors of w are quite similar when #; is
larger than the time when the student vector starts to rotate
around the teacher vector. We found that the longer the
learning proceeds and the larger the number of samples in
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the average becomes, the closer w approaches 1 and the
better the estimate of the parameter becomes. In conclusion,
the teacher vector B and the noise parameters k and o can be
identified using these methods. As for the asymptotic decay
of the generalization error, we found the asymptotic form of
E=E — Emn using the optimal learning rate for the output
and input noise models and for the three learning rules. In
the output noise model, Eopt o t1/2 for the Hebbian and
Perceptron rules, whereas Eqp o ~'/4 for the AdaTron rule.
On the other hand, in the input noise model, we obtained
E(,pt o t~! for the three rules.

Next, let us summarize the results of the two-teacher case.
We studied a situation where signals are given by two
teachers B; and B, with a definite probability. We adopted
the Hebbian, Perceptron and AdaTron learning rules. For the
Hebbian rule, we obtained the analytical solutions for order
parameters and the generalization error. The student vector
converges to the space ¥ spanned by B; and B;. On the
other hand, for the Perceptron and AdiTron rules, it turned
out that the normalized student vector J did not converge to
X. As in the single-teacher case, we expected that by taking
the average of J over time, the averaged vector (J ) would
converge to X, and since (J p) and (J 1) were theoretically
expected to converge to different vectors on ¥, B and B,
could be identified by these vectors. Indeed, we found that
(J p) converges to X as the number of samples in the average
increases. Using this vector, we could identify the proba-
bility that signals are sent by two teachers. On the other
hand, it turned out that (J4) does not converge to X,
although B, - (J a) and [(J4)| seem to converge to the
expected values, respectively. The reason that (J 4) does not
converge to X is considered to be due to the fact that the
fluctuation of (J4) might be large and not uniform in the
orthogonal complement of X.

As for the starting time (¢;) dependence of the conver-
gence of learning, as in the single-teacher case, we found
that the behavior of w; is quite similar when #; is larger than
the time when the student vector starts to rotate around the
teacher vectors.

Next, let us discuss the results in this paper.

We compare the convergence speed of learning in the
single-teacher case. If noise does not exist, the asymptotic
form of EUpt is expressed as E(, . o t~1/2 for the Hebbian rule
and Eopt o t~! for the Perceptron and AdaTron rules, so the
convergence speed of learning is faster in the Perceptron and
AdaTron rules than in the Hebbian rule. On the other hand,
in the output noise case, the convergence speed of learning
is faster in the Hebbian and Perceptron rules than in the
AdaTron rule, whereas in the input noise case, it is of the
same order for all three rules. That is, the convergence speed
of learning depends on whether or not noise exists, and also
on the type of noise.

In this paper, we studied the single-teacher and two-
teacher cases. We can also consider a many-teacher case. Let
us assume that there are n teachers and a signal is produced
by the i-th teacher with a probability r;. For simplicity, let us
assume that the norm of the teacher vectors is 1 and that any
two teacher vectors are orthogonal to each other. Then, we
can prove that the student vector tends to the space X
spanned by n teachers as t — oo for the Hebbian rule.

We studied the averaging method numerically. It is
desirable to also study this method theoretically. Recently, a
theoretical study of the averaging method in the learning of a
linear Perceptron in the presence of noise has been
performed.'” Extending theories about nonlinear Percep-
trons will be an interesting subject.

Appendix: Proof of ® — 1 as t — 0o for i = fopt

The equation for w in the common form for the three
learning rules is as follows:
dw . 1b~2
— = aij — = bij".
dt TR0
See Table A-l. oy is determined by (9/97)(dw/df) = 0.
Thus, we obtain

(A-D)

. a
=73 (A-2)

do @

o = TR (A-3)
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Table A-I. a and b for each learning rule in output and input noise models.
Output noise model Hebbian Perceptron AdaTron
2 k
a k=1 —o? ——(1 — o —(1 — a?)*?
\/; ( ) \/E( ) p )

k 1k
b w a)(— — —sin’lw) w|:— — —(wm-i-sin’la))]
b4 2 7
Input noise model Hebbian Perceptron AdaTron
[ 2 V1 + 0% — w?
a — (11— — (1 —w?) (1 -0?
(1l 4+ 0?) V2r(1 + 62) (1 4 a?)
b 1) gcc)q’l(L) ad 009’1< @ ) _vl +02_w2w
27 V1+ 02 b4 ) J1+ 02 1402
Therefore’ if b ;ﬁ 0’ da)/dz‘ =01is equivalent toa=0.b>0 5) T.L.H. Watkin, A. Rau and M. Biehl: Rev. Mod. Phys. 65 (1993) 499.
is easily proved for 0 < w < 1 for input and output noise 6) O. Kinouchi and N. Caticha: J. Phys. A 25 (1992) 6243.
dels. Since a x 1 — 2. we obtain the unique stationar 7) O. Kinouchi and N. Caticha: J. Phys. A 26 (1993) 6161.
fmodels. ’ q Y 8 C.W.H. Mace and A. C. C. Coolen: Stat. Comput. 8 (1998) 55.
state w* = 1. 9) On-line Learning in Neural Networks, ed. D. Saad (Cambridge
University Press, Cambridge, 2001).
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