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We analyze the on-line learning of a Perceptron from signals produced by a single Perceptron suffering
from external noise or by two independent Perceptrons without noise. We adopt typical three learning
rules in both single-teacher and two-teacher cases. For the single-teacher case, we treat the input and
output noises and for the two-teacher case, we assume that signals are given by two teachers with a
definite probability. In the single-teacher case, in order to improve the learning when it does not succeed
in the sense that the student vector does not converge to the teacher vector, we use two methods: a
method based on the optimal learning rate and an averaging method. Furthermore, we obtain an
asymptotic form of the generalization error using an optimal learning rate for the three learning rules, and
we estimate noise parameters using the simulation data by the averaging method. In the two-teacher case,
for the Hebbian rule, we give analytical solutions of order parameters. Furthermore, we estimate noise
parameters using the Perceptron rule by the averaging method. The theoretical results agree quite well
with the numerical simulations.
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1. Introduction

We study the on-line learning by a single Perceptron1)

from signals produced by a single teacher or by two teachers.
In the single-teacher case, we assume that the data is

contaminated by noise and we adopt the Hebbian,2)

Perceptron,1) and AdaTron3) rules as learning rules.4) There
have been many studies that focus on the case of a single
teacher.5–10) The main purpose of the present paper is to offer
some methods of identifying the teacher vector and
estimating noise parameters when the learning is not
successful in the sense that the student vector does not
converge to the teacher vector.11) In the two-teacher
case, few previous studies exist.11) In this case, we study a
situation in which signals are given by two teachers with a
definite probability, and by adopting the Hebbian, Percep-
tron, and AdaTron rules as learning rules, we then estimate
the probability. The results are as follows: In the single-
teacher case, when the learning fails, the teacher can be
identified using the optimal learning rate or by taking the
average of the student vector at different times. In particular,
noise parameters can be determined using the averaging
method. Furthermore, we can obtain an asymptotic form of
the generalization error using an optimal learning rate for the
three learning rules. In the two-teacher case, the student
vector approaches the two-dimensional space � spanned by
the teacher vectors for the Hebbian rule. On the other hand,
for the Perceptron and AdaTron rules, the student vector
does not approach �, but the time-averaged student vector
does. Using this fact, by the averaging method we estimate
the probability that the signals are sent by the teachers in the
Perceptron rule. Furthermore, both in the single-teacher and

two-teacher cases, in the averaging method, we find that the
behaviors of the convergence of learning are quite similar
when the starting time at which the average is taken is larger
than the time at which the student vector starts to rotate
around the teacher vector.

The paper is organized as follows: In §2, the formulation
in the case of a single teacher is given. In §3 and §4, the
cases of output noise and input noise are analyzed,
respectively. In §5, the formulation and analysis of the
two-teacher case are given. Section 6 is devoted to a
summary and discussions.

2. Formulation in Single-Teacher Case

We consider the supervised learning of a Perceptron in the
presence of noise. Let J and B be the student and teacher
vectors, respectively. We assume that these are N-dimen-
sional vectors. We also assume that jBj ¼ 1. Let � be an N-
dimensional example vector. We assume that its component
�i takes �1 and is drawn independently with the probability
Pð� ¼ 1Þ ¼ 1� Pð� ¼ �1Þ ¼ 1=2. The output S generated
by the student J for � is given by

S ¼ sgnðJ � �Þ; ð1Þ

where J � � denotes the inner product of J and �, sgnðxÞ ¼ 1

for x � 0, and sgnðxÞ ¼ �1 for x < 0. When there is no
noise, the output T generated by the teacher for � is given by

T ¼ sgnðB � �Þ: ð2Þ

In this paper, we treat the cases in which noise exists.
We consider the output noise and input noise. Let P be
the probability of T ¼ 1. In the output noise model, P is
given by

PðyÞ ¼
1

2
ð1þ k sgnðyÞÞ; ð3Þ

where y ¼ B � �. That is, for y > 0, the probability of T ¼ 1

is ð1þ kÞ=2. In the input noise model, T is given by
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T ¼ sgnðB � ð�þ �ÞÞ; ð4Þ

where each component �i of � is assumed to be independ-
ently drawn from the Gaussian distribution of the mean 0
and the standard deviation �. Then, P is expressed as

PðyÞ ¼ 1� H
y

�

� �
; ð5Þ

where HðyÞ ¼
R1
y

Du and Du ¼ ðdu=
ffiffiffiffiffiffi
2�
p
Þe�u2=2. We adopt

the following learning algorithm

J t þ
1

N

� �
¼ JðtÞ þ

1

N
��TF ½jJj; J � �; T�; ð6Þ

where � is the learning rate and F is the learning rule and is
assumed to depend on jJj, J � � and T . Here, jJj is the norm
of J. We consider the following three learning rules

Hebbian rule: F ¼ 1; ð7Þ
Perceptron rule: F ¼ �ð�TSÞ; ð8Þ
AdaTron rule: F ¼ j� � Jj�ð�TSÞ; ð9Þ

where �ðxÞ ¼ 1 for x � 0 and �ðxÞ ¼ 0 for x < 0. As for the
order parameters, we adopt Q ¼ J2 and R ¼ J � B. From
eq. (6), we obtain the differential equations for Q and R:8)

dQ

dt
¼ 2�hðJ � �ÞTF i� þ �2hF 2i�; ð10Þ

dR

dt
¼ �hðB � �ÞTF i�: ð11Þ

Here, we assume self-averaging12) and h�i� denotes the
average over examples and noises. Let us define J ¼ jJj,bJJ � J=J, and x �bJJ � �. Since F is expressed as F ½J; Jx; T�,
these equations are rewritten as

dQ

dt
¼ 2�JhxTF ½J; Jx; T�i� þ �2hF 2½J; Jx;T�i�; ð12Þ

dR

dt
¼ �hyTF ½J; Jx;T�i�: ð13Þ

In addition to Q and R, J ¼
ffiffiffiffi
Q
p

and ! ¼ R=J are also used,
and their equations are

dJ

dt
¼ �hxTF ½J; Jx; T�i� þ

�2

2J
hF 2½J; Jx;T�i� ð14Þ

d!

dt
¼
�

J
hðy� !xÞTF ½J; Jx;T�i� �

!�2

2J2
hF 2½J; Jx;T�i�:

ð15Þ
The generalization error E is given by

E ¼ h�ð�STÞi�: ð16Þ

The probability distribution Pðx; yÞ of x and y is given by the
Gaussian distribution with hxi ¼ 0, hyi ¼ 0, hx2i ¼ 1, hy2i ¼
1 and hxyi ¼ !,

Pðx; yÞ ¼
1

2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� !2
p exp �

1

2ð1� !2Þ
ðx2 þ y2 � 2!xyÞ

� �
:

ð17Þ

Thus, the average over examples � of A, hAi�, is replaced
by hAix;y �

R
dx dyPðx; yÞA. The average over noise � of a

quantity AðTÞ is given as follows:

hAi� ¼ Að1ÞPðyÞ þ Að�1Þð1� PðyÞÞ
¼ Að�1Þ þ PðyÞðAð1Þ � Að�1ÞÞ:

ð18Þ

3. Output Noise Model

In the output noise model, PðyÞ ¼ ð1=2Þð1þ k sgnðyÞÞ.
Then, the average of AðTÞ over noise is given by

hAi� ¼
1

2
ðAþ þ A�Þ þ

k

2
ðAþ � A�Þ sgnðyÞ

¼ As þ kAas sgnðyÞ;
ð19Þ

where

Aþ ¼ Að1Þ; A� ¼ Að�1Þ;

As ¼
1

2
ðAþ þ A�1Þ;

and

Aas ¼
1

2
ðAþ � A�1Þ:

Since

hTF i� ¼ ðTF Þs þ kðTF Þas sgnðyÞ ¼ F as þ kF s sgnðyÞ;

we obtain

dQ

dt
¼ 2�JhxfF as þ kF s sgnðyÞgix;y

þ �2hF 2
s þ kF 2

as sgnðyÞix;y; ð20Þ
dR

dt
¼ �hyfF as þ kF s sgnðyÞgix;y: ð21Þ

By performing the average over x and y, we get equations
for Q, R, J, and !. The generalization error E ¼ h�ð�TSÞi�
is given by

E ¼
1� k

2
þ

k

�
cos�1ð!Þ;

¼ Emin þ
k

�
cos�1ð!Þ;

where Emin ¼ ð1� kÞ=2 is the minimum value of the
generalization error. Then ~EE � E � Emin is expressed as

~EE ¼
k

�
cos�1ð!Þ: ð22Þ

In the next subsection, we study the learning behavior
when the learning rate � is constant.

3.1 Case of constant learning rate
We summarize the learning behavior in each learning

rule.
In the Hebbian rule, the equations for R, J, and ! are

dR

dt
¼ �k

ffiffiffiffi
2

�

r
; ð23Þ

dJ

dt
¼ �k

ffiffiffiffi
2

�

r
!þ

�2

2J
; ð24Þ

d!

dt
¼
�k

J

ffiffiffiffi
2

�

r
ð1� !2Þ �

�2!

2J2
: ð25Þ

This case has been studied previously and these equations
have been solved analytically.13) The solutions for R, J, and
! with initial conditions Rð0Þ ¼ 0, Jð0Þ ¼ 1, and !ð0Þ ¼ 0

are
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R ¼ �k
ffiffiffiffi
2

�

r
t; ð26Þ

J ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2t 1þ

2

�
k2t

� �s
; ð27Þ

! ¼ 1þ
�

2

1þ �2t

k2�2t2

� ��1=2

: ð28Þ

Thus, J !1 and !! 1 as t!1. Therefore, learning
succeeds in the sense that the student vector converges to the
teacher vector, even if noise exists. In the Perceptron rule,
the equations for J and ! are

dR

dt
¼

�ffiffiffiffiffiffi
2�
p ðk � !Þ; ð29Þ

dJ

dt
¼

�ffiffiffiffiffiffi
2�
p ð!k � 1Þ þ

�2

2J

1

2
�

k

�
sin�1ð!Þ

� �
; ð30Þ

d!

dt
¼

�kffiffiffiffiffiffi
2�
p

J
ð1� !2Þ �

�2!

2J2

1

2
�

k

�
sin�1ð!Þ

� �
: ð31Þ

From these equations, we obtain the following stationary
state:

J�P ¼ �
ffiffiffiffi
�

2

r 1

2
�

k

�
sin�1ðkÞ

1� k2
; !�P ¼ k:

Since !�P < 1, learning fails.
In the AdaTron rule, the equations for J and ! are

dR

dt
¼

k

�
�J

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� !2
p

� �!J
1

2
�

k

�
sin�1ð!Þ

�� �
; ð32Þ

dJ

dt
¼ �J

�

2
� 1

� �
1

2
�

k

�

�
!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� !2
p

þ sin�1ð!Þ
�� �
; ð33Þ

d!

dt
¼

k�

�
ð1� !2Þ3=2

�
�2

2
!

1

2
�

k

�

�
!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� !2
p

þ sin�1ð!Þ
�� �
: ð34Þ

The equation for ! does not include J. The factor

1

2
�

k

�

�
!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� !2
p

þ sin�1ð!Þ
�� �

in the equation for J is positive for 0 < k < 1 and 0 <
! 	 1. Thus, as t!1, J! 0 for � < 2, J ¼ constant
for � ¼ 2 and J !1 for � > 2. !! !�A as t!1. Here,
!�A is the solution of d!=dt ¼ 0 and is less than 1. As in the
case of the Perceptron rule, learning fails.

As shown in the left panel of Fig. 1, in each learning rule
there is agreement between the simulation results and the
theoretical ones obtained using the Runge–Kutta–Gill
(RKG) method.

As seen above, learning fails for the Perceptron and
AdaTron rules. That is, ! does not tend to 1. In the following
subsections, we consider two methods to improve the
learning for these two cases. First, we introduce the time-
dependent learning rate � and second, we take the time
average.

3.2 Optimal learning rate
Now, let us discuss the optimal learning rate �opt. �opt is

defined by the following relation:8)

8t � 0 :
@

@e�� d

dt
E

� �
¼ 0: ð35Þ

e�� is �=J for the Hebbian and Perceptron rules, and is � for
the AdaTron rule. Since E ¼ ð1� kÞ=2þ ðk=�Þ cos�1ð!Þ,
the relationship is equivalent to

8t � 0 :
@

@e�� d

dt
!

� �
¼ 0: ð36Þ

For each of the three learning rules, it is shown that !! 1

when e��opt is adopted. See Appendix A. In the right panel of
Fig. 1, we display the numerical results for ! in each rule.
We found excellent agreement between the theoretical and
numerical results. In the theoretical calculation, we used the
asymptotic forms ofe��opt. In Table I, the time dependences of
the optimale��opt and eEEopt, where the latter is eEE obtained usinge��opt for large t, are given for each learning rule. In Table II,
we summarize the asymptotic behavior of !, eEE, and J for a
constant � and for the optimal �, �opt, for each learning rule.
Here, �opt ¼ e��optjJj for the Hebbian and Perceptron rules,
and �opt ¼e��opt for the AdaTron rule.

From Table I, we note that the asymptotic form of eEEopt is
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Fig. 1. Time dependence of ! in output noise model. k ¼ 0:5. Left panel: Constant learning rate, � ¼ 1. Theoretical results (RKG): solid curve: Hebbian,

dashed curve: Perceptron, dotted curve: AdaTron. Simulations (N ¼ 1000); þ: Hebbian, 
: Perceptron, �: AdaTron. Right panel: Optimal learning rate.

For t < 50, � ¼ 1 and for t � 50, � ¼ �optðtÞ. Theoretical results (RKG): dashed curve: Perceptron, dotted curve: AdaTron. Simulations (N ¼ 1000); 
:

Perceptron, �: AdaTron.
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proportional to t�1=2 for the Hebbian and Perceptron rules,
whereas it is proportional to t�1=4 for the AdaTron rule for
k < 1. That is, the convergence speed of the Hebbian rule
and that of the Perceptron rule are comparable, but that of
the AdaTron is much lower than those of the Hebbian and
Perceptron rules.

Next, we study the averaging method used to improve
learning.

3.3 Time averaging method
In the Perceptron rule, !! !�P and in the AdaTron rule,

!! !�A as t!1. Both !�P and !�A are less than 1. Thus,
we consider that bJJ ¼ J=J rotates around or is scattered
around B as time progresses. Therefore, we expect that by
taking the time average of bJJ, the direction of the time-
averaged vector hbJJi of bJJ tends toward the direction of B as
the number of samples in the average increases. Here, hbJJi is
defined by

hbJJi � 1

L

XL
i¼1

bJJðtiÞ; ð37Þ

where 0 5 t1 < t2 < � � � < tL. In Fig. 2, we display the
results of this averaging method.

Since J ! J�P for the Perceptron rule, we used the time-
averaged vector hJi of J only. As shown in the left panel of
Fig. 2, ðB � hJiÞ=jhJij increases and seems to approach 1 as
the number of samples in the average, which is denoted by L

in eq. (37), increases. For the AdaTron rule, since J ! 0,
we used both hJi and hbJJi, and found that we could get !!
1 using only hbJJi, as L increases.

In Fig. 3, we display the dependence of the convergence
of ! on the starting time t1 when the average is taken. As can
be seen in the right panel of Fig. 3, the t � t1 dependences
are quite similar for t1 ¼ 5, 10, 25, 50, 100, and 150 except
for t1 ¼ 0. This result is attributed to the fact that the
student vector already starts to rotate around the teacher
vector for these values of t1 as is seen in the left panel
of Fig. 3. On the other hand, for t1 ¼ 0, where all data are
used to take the average, the convergence is slower than for
other cases because ! is still approaching !�P. We also
obtained similar results using the AdaTron rule. Further-
more, we can estimate k from the relation jhbJJPij ¼ k or
jhbJJAij ¼ !�A in the Perceptron or AdaTron rule, respectively.
Indeed, k was estimated as 0.501 and 0.504 when k ¼ 0:5
using the value jhbJJPij in the Perceptron rule and jhbJJAij in the
AdaTron rule at t ¼ 1000, respectively.

In the next section, we study the input noise model.

Table II. Asymptotic behavior with constant � and �opt in output noise

model for k < 1.

Learning rule Hebbian Perceptron AdaTron

Asymptotic behavior !! 1 !! !�P ð<1Þ !! !�A ð<1Þ
with eEE! 0 eEE! eEE�P eEE! eEE�A

� ¼ constant ð¼1Þ J!1 J! J�P J! 0

Asymptotic behavior !! 1 !! 1 !! 1

with eEE! 0 eEE! 0 eEE! 0

� ¼ �opt J!1 J! 0 J! 0
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1
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ω
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0.8

1

0 50 100 150 200

t

J

Fig. 2. Averaging method for Perceptron and AdaTron rules in output noise model. k ¼ 0:5. The average is taken for t � 50; that is, t1 in eq. (31) is 50.

Symbols denote simulation data for N ¼ 1000. 
: Perceptron (not normalized), square: AdaTron (normalized). Curves denote the theoretical results for

� ¼ 1 without averaging. Dashed: Perceptron, dotted: AdaTron. Left panel: Time dependence of !. Right panel: Time dependence of J. Data without

averaging for � ¼ 1 are also depicted. þ: Perceptron; closed square: AdaTron. The theoretical results for J�P (dotted line), J�P!
�
P (dashed line) and !�A

(dashed-dotted line) are depicted in the right panel.

Table I. Asymptotic form of optimal learning rate and eEEopt for t � 1 in output noise model.

Learning rule Hebbian Perceptron AdaTron

e��optðtÞ
1

k

ffiffiffiffi
�

2

r
t�1 2

ffiffiffiffiffiffi
2�
p

t�1 ðk ¼ 1Þ;
ffiffiffiffiffiffi
2�
p

k
t�1 ðk < 1Þ

3

2
ðk ¼ 1Þ;

�2

4k2ð1� kÞ

� �1=4

t�3=4 ðk < 1Þ

eEEopt

1ffiffiffiffiffiffi
2�
p t�1=2 4

�
t�1 ðk ¼ 1Þ;

ffiffiffiffiffiffiffiffiffiffiffiffi
1� k

�

r
t�1=2 ðk < 1Þ

4

3
t�1 ðk ¼ 1Þ;

k2ð1� kÞ
4�2

� �1=4

t�1=4 ðk < 1Þ
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4. Input Noise Model

In the input noise model, PðyÞ ¼ 1� Hðy=�Þ. Then, the
average of AðTÞ over noise is given by

hAi� ¼ Aþ � ðAþ � A�ÞH
y

�

� �
¼ Aþ � 2AasH

y

�

� �
: ð38Þ

Since

hTF i� ¼ ðTF Þþ � 2ðTF ÞasH
y

�

� �
¼ F þ � 2F sH

y

�

� �
;

ð39Þ

we obtain

dQ

dt
¼ 2�J x F þ � 2F sH

y

�

� �	 
� �
x;y

þ �2 F 2
þ � 2F 2

asH
y

�

� �� �
x;y

ð40Þ

dR

dt
¼ � y F þ � 2F sH

y

�

� �	 
� �
x;y

: ð41Þ

By taking the average over x and y, we get equations for Q,
R, J, and !. The generalization error is given by

E ¼
1

�
cos�1 !ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �2
p

� �
: ð42Þ

The minimum value of E is

Emin ¼
1

�
cos�1 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �2
p

� �
: ð43Þ

Thus, ~EE ¼ E � Emin is

~EE ¼ E �
1

�
cos�1 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �2
p

� �
: ð44Þ

In the next subsection, we study the learning behavior when
the learning rate � is constant.

4.1 Case of constant learning rate
In the Hebbian rule, we obtain

dR

dt
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�ð1þ �2Þ

r
�; ð45Þ

dJ

dt
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�ð1þ �2Þ

r
�!þ

�2

2J
; ð46Þ

d!

dt
¼
�

J

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�ð1þ �2Þ

r
ð1� !2Þ �

!�2

2J2
: ð47Þ

This case has also been studied previously, and these
equations have been solved analytically.13) These equations
and their solutions can be obtained from eqs. (23)–(28),
replacing k by 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2
p

. Thus, J !1 and !! 1 as
t!1. Therefore, the learning succeeds even if noise
exists. In the Perceptron rule, we obtain

dR

dt
¼

�ffiffiffiffiffiffi
2�
p

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2
p � !

� �
; ð48Þ

dJ

dt
¼

�ffiffiffiffiffiffi
2�
p

!ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2
p � 1

� �
þ
�2

2�J
cos�1 !ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �2
p

� �
; ð49Þ

d!

dt
¼
�

J

1� !2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ð1þ �2Þ

p �
!�2

2�J2
cos�1 !ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �2
p

� �
: ð50Þ

From these equations, we get the stationary state as

J�P ¼
1þ �2

�2

�ffiffiffiffiffiffi
2�
p cos�1 1

1þ �2

� �
; !�P ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2
p : ð51Þ

Thus, learning fails for � > 0. In the AdaTron rule, we
obtain

dR

dt
¼
�J

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2 � !2
p

1þ �2
� !

( )
; ð52Þ

dJ

dt
¼
�J

�

�

2
� 1

� �

 cos�1 !ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �2
p

� �
�
!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2 � !2
p

1þ �2

( )
; ð53Þ

d!

dt
¼ � 1� !2 þ

�

2
!2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2 � !2
p

�ð1þ �2Þ

�
�2

2�
! cos�1 !ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �2
p

� �
: ð54Þ
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Fig. 3. Averaging method for Perceptron rule in output noise model. k ¼ 0:5. t1 dependence of convergence. Symbols denote simulation data for

N ¼ 1000. Left panel: t dependence of !. �: t1 ¼ 0, closed circle: t1 ¼ 5, triangle: t1 ¼ 10, square: t1 ¼ 25, 
: t1 ¼ 50, closed square: t1 ¼ 100, circle:

t1 ¼ 150. Right panel: t � t1 dependence of !. Each symbol corresponds to the same value of t1 as in the left panel except for the case of t1 ¼ 50, in

which data are connected by a solid line without symbols. Furthermore, for t1 ¼ 0 and 5, symbols are connected by a dashed line.
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The equation for ! does not include J. The factor

cos�1 !ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2
p

� �
�
!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2 � !2
p

1þ �2

( )

in the equation for J is positive for � > 0 and 0 	 ! 	 1.
Thus, as t!1, J ! 0 for � < 2, J ¼ constant for � ¼ 2

and J!1 for � > 2. !! !�A as t!1. Here, !�A is the
solution of d!=dt ¼ 0 and is less than 1. Thus, learning fails.

As shown in Fig. 4, in each learning rule the agreement
between the simulation results and the theoretical ones is
very good.

Since learning fails for the Perceptron and AdaTron rules,
in order to improve the learning, we consider the optimal
learning rate and the averaging method.

4.2 Optimal learning rate
The behaviors of ! and J in the the limit of t!1 in the

three rules are the same as in the case of the output noise
model as shown in Table II. See Fig. 4. In Table III,
asymptotic forms of optimal learning rate and eEEopt for t �
1 in the input noise model are shown.

From Table III, we note that the asymptotic form of eEEopt is
proportional to t�1 for the three learning rules.

4.3 Averaging method
As in the output noise model, ! tends to !�, which is less

than 1, in the Perceptron and AdaTron rules. Therefore, we
take the time averages of J and bJJ for the Perceptron and
AdaTron rules, respectively. As shown in Fig. 5, ! for the
averaged vector increases and seems to approach 1 as L

increases. In Fig. 6, we display the dependence of the
convergence of ! on the starting time t1 when the average is
taken. As seen in the right panel of Fig. 6, the t � t1
dependences of ! are quite similar for t1 ¼ 50, 100, and 150,
but the behaviors of ! are different for t1 ¼ 0, 5, 10, 15, and
25. The reason is the same as that in the case of the output
noise model; that is, for t1 ¼ 50, 100, and 150, the student
vector already starts to rotate around the teacher vector,
whereas for t1 ¼ 0, 5, 10, 15, and 25, ! is still approaching
!�P, as seen in the left panel of Fig. 6.

We obtained similar results using the AdaTron rule.
Furthermore, we can estimate � from the relationship
jhbJJPij ¼ !�P and jhbJJAij ¼ !�A. When � ¼ 0:5, we estimate
� ¼ 0:498 and � ¼ 0:496 in the Perceptron and AdaTron
rules at t ¼ 1000, respectively.

5. Two-Teacher Model

5.1 Formulation of two-teacher model
We consider the case in which signals are given by two

teacher Perceptrons. Let B1 and B2 be the N-dimensional
teacher vectors. For simplicity, we assume B1 and B2 are
orthogonal to each other and are normalized, B1 � B2 ¼ 0

and jB1j ¼ jB2j ¼ 1. Let � be an N-dimensional example
vector. We assume that its component �i takes �1 and
is drawn independently with the probability Pð� ¼ 1Þ ¼
1� Pð� ¼ �1Þ ¼ 1=2. The output Ti of Bi for � is
given by

Ti ¼ sgnðBi � �Þ; i ¼ 1; 2: ð55Þ

Furthermore, we assume that the student receives a signal
from B1 or B2 randomly. Let ri be the probability that a
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Fig. 4. Time dependence of ! in input noise model. � ¼ 0:5. Left panel: Constant learning rate. � ¼ 1. Theoretical results (RKG); solid curve: Hebbian,

dashed curve: Perceptron, dotted curve: AdaTron. Simulations (N ¼ 1000); þ: Hebbian, 
: Perceptron, �: AdaTron. Right panel: Optimal learning rate.

For t < 50, � ¼ 1 and for t � 50, � ¼ �optðtÞ. Theoretical results (RKG); dashed curve: Perceptron, dotted curve: AdaTron. Simulations (N ¼ 1000); 
:

Perceptron, �: AdaTron.

Table III. Asymptotic form of optimal learning rate and eEEopt for t � 1 in input noise model for � > 0.

Hebbian Perceptron AdaTron

e��optðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1þ �2Þ

2

r
t�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ð1þ �2Þ

p
t�1 �ð1þ �2Þ

�
t�1

eEEopt

1þ �2

4�
t�1 1þ �2

2��
cos�1 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �2
p

� �
t�1 ð1þ �2Þ2

2�3
cos�1 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �2
p

� �
�

�

1þ �2

	 

t�1
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signal is from the teacher Bi for i ¼ 1 and 2. Then, r1 þ r2 ¼
1 holds. Let J be the N-dimensional student vector. The
output S of the student J for � is given by

S ¼ sgnðJ � �Þ: ð56Þ

The learning algorithm is given by

J t þ
1

N

� �
¼ JðtÞ þ

1

N
��TF ½jJj; J � �; T�; ð57Þ

where � is the learning rate and F is the learning rule.
The order parameters are Q ¼ J2 and Ri ¼ J � Bi ði ¼ 1; 2Þ.
The generalization error E is calculated as

E ¼ h�ð�STÞi ¼
1

�
½r cos�1 !1 þ ð1� rÞ cos�1 !2�; ð58Þ

where !i ¼ Ri=J ði ¼ 1; 2Þ with J ¼ jJj. We also obtain the
differential equations for Q, R1 and R2 for each learning rule.
In the following, we study the learning for each rule.

In the Hebbian rule, we get

dR1

dt
¼ �

ffiffiffiffi
2

�

r
r; ð59Þ

dR2

dt
¼ �

ffiffiffiffi
2

�

r
ð1� rÞ; ð60Þ

dJ

dt
¼ �

ffiffiffiffi
2

�

r
fr!1 þ ð1� rÞ!2g þ

�2

2J
; ð61Þ

d!1

dt
¼
�

J

ffiffiffiffi
2

�

r
rð1� !2

1Þ � ð1� rÞ!1!2


 �
�
!1�

2

2J2
; ð62Þ

d!2

dt
¼
�

J

ffiffiffiffi
2

�

r
ð1� rÞð1� !2

2Þ � r!1!2


 �
�
!2�

2

2J2
; ð63Þ

where r ¼ r1. Defining � ¼ r!1 þ ð1� rÞ!2 and R ¼ J�,
we obtain

dR

dt
¼ �

ffiffiffiffi
2

�

r
��H ; ð64Þ
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Fig. 6. Averaging method for Perceptron rule in input noise model. � ¼ 0:5. t1 dependence of convergence. Symbols denote simulation data for N ¼ 1000.

Left panel: t dependence of !. �: t1 ¼ 0, closed circle: t1 ¼ 5, triangle: t1 ¼ 10, closed triangle: t1 ¼ 15, square: t1 ¼ 25,
: t1 ¼ 50, closed square: t1 ¼
100, circle: t1 ¼ 150. Right panel: t � t1 dependence of !. Each symbol corresponds to the same value of t1 as in the left panel except for the case of

t1 ¼ 50, in which data are connected by a solid line without symbols. Furthermore, for t1 ¼ 0, 5, 10, 15, and 25, symbols are connected by a dashed line.
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Fig. 5. Averaging method for Perceptron and AdaTron rules in input noise model. � ¼ 0:5. The average is taken for t � 50. Symbols denote the simulation

data for N ¼ 1000. 
: Perceptron (not normalized), square: AdaTron (normalized). Curves denote the theoretical results for � ¼ 1 without averaging.

Dashed: Perceptron, dotted: AdaTron. Left panel: Time dependence of !. Right panel: Time dependence of J. Data without averaging for � ¼ 1 are also

depicted. þ: Perceptron, closed square: AdaTron. The theoretical results for J�P (dotted line) and J�P!
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P (dashed line) and !�A (dashed-dotted line) are

depicted in the right panel.
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dQ

dt
¼ 2�

ffiffiffiffi
2

�

r
Rþ �2; ð65Þ

where ��H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ð1� rÞ2

p
. These equations are solved

analytically and solutions with R1ð0Þ ¼ R2ð0Þ ¼ 0 and
Qð0Þ ¼ 1 are

R1 ¼ �
ffiffiffiffi
2

�

r
rt; ð66Þ

R2 ¼ �
ffiffiffiffi
2

�

r
ð1� rÞt; ð67Þ

R ¼ �
ffiffiffiffi
2

�

r
��Ht; ð68Þ

Q ¼ �2 2

�
��Ht

2 þ �2t þ 1; ð69Þ

J ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

2

�
��Ht

2 þ �2t þ 1

r
; ð70Þ

!1 ¼
�

ffiffiffiffi
2

�

s
rtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2
2

�
��Ht

2 þ �2t þ 1

s ; ð71Þ

!2 ¼
�

ffiffiffiffi
2

�

s
ð1� rÞtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2
2

�
��Ht

2 þ �2t þ 1

s : ð72Þ

Thus, the generalization error is given by

E ¼
1

�
r cos�1

�

ffiffiffiffi
2

�

s
rtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2
2

�
��Ht

2 þ �2t þ 1

s
0BBBBB@

1CCCCCA

2666664

þ ð1� rÞ cos�1

�

ffiffiffiffi
2

�

s
ð1� rÞtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2
2

�
��Ht

2 þ �2t þ 1

s
0BBBBB@

1CCCCCA

3777775:
ð73Þ

Furthermore, we obtain J!1, !1! !�H;1, !2 ! !�H;2,
�! ��H and E! E�H ¼ ð1=�Þ½r cos�1 !�H;1 þ
ð1� rÞ cos�1 !�H;2� as t!1. Here, !�H;1 and !�H;2 are
defined as

!�H;1 ¼
rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ ð1� rÞ2
p ¼

r

��H
;

!�H;2 ¼
1� rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ ð1� rÞ2
p ¼

1� r

��H
:

ð74Þ

Since ð!�H;1Þ
2 þ ð!�H;2Þ

2 ¼ 1,bJJ ð� J=JÞ tends to the plane �,
which is spanned by B1 and B2. In Fig. 7, we display the
numerical and theoretical results. From the figure, we note
that the numerical results agree with the theoretical ones
very well, although there exists a small fluctuation in the
simulation because the student cannot learn from both
teachers. To eliminate fluctuations, it is useful to take the
time average of bJJ, hbJJi. We confirmed that this procedure
really works and that the fluctuations are reduced. Using
this method, we can obtain the vector hbJJi that lies on �.
We denote this using hbJJHi. If we can find another vector
on � independent of hbJJHi using the simulation, we can
identify B1 and B2.

In the Perceptron rule, we get

dR1

dt
¼

�ffiffiffiffiffiffi
2�
p ðr � !1Þ; ð75Þ

dR2

dt
¼

�ffiffiffiffiffiffi
2�
p ð1� r � !2Þ; ð76Þ

dJ

dt
¼

�ffiffiffiffiffiffi
2�
p r!1 þ ð1� rÞ!2 � 1½ � þ

�2

2J
E; ð77Þ

d!1

dt
¼

�ffiffiffiffiffiffi
2�
p

J
rð1� !2

1Þ � ð1� rÞ!1!2


 �
�
�2!1

2J2
E; ð78Þ

d!2

dt
¼

�ffiffiffiffiffiffi
2�
p

J
ð1� rÞð1� !2

2Þ � r!1!2


 �
�
�2!2

2J2
E: ð79Þ

The stationary states for !1 and !2 are obtained as

!�P;1 ¼ r; !�P;2 ¼ 1� r: ð80Þ

The stationary state for J, J�P, is given by

J�P ¼
ffiffiffiffiffiffi
2�
p

�

4rð1� rÞ
EðrÞ; ð81Þ

where EðrÞ ¼ ð1=�Þfr cos�1ðrÞ þ ð1� rÞ cos�1ð1� rÞg is the
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Fig. 7. Time dependence of !1; !2 (left) and J (right) for three rules. r ¼ 0:6. Curves are theoretical results (RKG) and symbols are numerical results
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generalization error for t!1. As shown in Fig. 7, the
theoretical and numerical results are in close agreement,
although the fluctuation in the simulation is larger in this
case than in the case of the Hebbian rule. This is because J
does not approach the plain �, but rotates around both B1

and B2 with angles cos�1 r and cos�1ð1� rÞ, respectively.
Therefore, if we take the time average of J, hJi will
converge in � and !i converges to !�H;i ¼ ri=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 þ r22

p
for

i ¼ 1; 2 as the number of samples in the average increases.
Figure 8 shows this to be the case. In Fig. 9, we display

the dependence of the convergence of !1 and !2 on the
starting time t1 when the average is taken. As seen in the
right panel of Fig. 9, the t � t1 dependences are quite similar
for t1 ¼ 25, 50, 100, and 150 except for t1 ¼ 0, 5, and 10.
This result is attributed to the fact that the student vector
already starts to rotate around the teacher vectors for t1 ¼
25, 50, 100, and 150, whereas for t1 ¼ 0, 5, and 10, !i is still
approaching !�A;i. Furthermore, getting the value of jhbJJij
from the simulation, we can numerically determine r. Let us

denote hJi and hbJJi using hJPi and hbJJPi, respectively. From
the relationship jhbJJPij ¼ ��H , we estimated r ¼ 0:905, 0.648,
and 0:618, when r ¼ 0:9, 0, 6, and 0.52, respectively. As r

decreases, the discrepancy between the estimated r and
the true value of r becomes larger. Since hJPi is proportional
to hbJJHi obtained using the Hebbian rule, we need another
vector independent of bJJH on � in order to identify B1

and B2.
In the AdaTron rule, we get

dR1

dt
¼ �J

r

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� !2

1

q
� !1E

� �
; ð82Þ

dR2

dt
¼ �J

1� r

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� !2

2

q
� !2E

� �
; ð83Þ

dJ

dt
¼ ��J 1�

�

2

� �

 E �

r

�
!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� !2

1

q
�

1� r

�
!2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� !2

2

q� �
; ð84Þ
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Fig. 8. Averaging method for Perceptron. r ¼ 0:6. The average is taken for t � 50. Symbols denote simulation data for N ¼ 1000. þ: averaging (not

normalized), square: averaging (normalized). Dashed curves and 
 denote the theoretical and numerical results for � ¼ 1 without averaging. Left panel:

Time dependence of !1 and !2. In this case, since results with and without normalization are the same, only the former is depicted. The theoretical

results for !�H;1 and !�H;2 are also depicted (full line). Right panel: Time dependence of J. Theoretical results for J�P (dotted line), ��H (dashed-dotted line)

and J�P�
�
H (dashed line) are depicted.
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d!1

dt
¼ �

�2

2
!1E þ

r�

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� !2

1

q
1� 1�

�

2

� �
!2

1

� �
� � 1�

�

2

� �
1� r

�
!1!2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� !2

2

q
; ð85Þ

d!2

dt
¼ �

�2

2
!2E þ

ð1� rÞ�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� !2

2

q
1� 1�

�

2

� �
!2

2

� �
� � 1�

�

2

� �
r

�
!1!2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� !2

1

q
: ð86Þ

For the stationary states of !1 and !2, we obtain the
following relationship:

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� !�A;12

q
!�A;1

¼
ð1� rÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� !�A;22

q
!�A;2

¼ �: ð87Þ

From this, we get

!�A;2 ¼
ð1� rÞ!�A;1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ ð1� 2rÞ!�A;12
q : ð88Þ

!�A;1 and !�A;2 are determined by eq. (87) and the following
relationship:

��

2
E�A ¼ � 1� 1�

�

2

� �
ð!�A;1

2 þ !�A;2
2Þ

	 

; ð89Þ

where

E�A ¼
1

�
fr cos�1ð!�A;1Þ þ ð1� rÞ cos�1ð!�A;2Þg:

Furthermore, we obtain for t � 1

dJ

dt
’ � 1�

�

2

� �
J
�

�
ð1� !�A;1

2 � !�A;2
2Þ: ð90Þ

It is proved that !�A;1
2 þ !�A;22 < 1 for 0 < r < 1. Thus, as

t!1, J ! 0 for � < 2, J ¼ constant for � ¼ 2, and J !
1 for � > 2.

As shown in Fig. 10, the theoretical and numerical results
agree very well, although the fluctuation in the simulation
is larger in this case than in the case of the Hebbian rule.
This is because J does not approach the plain � but rotates

around both B1 and B2 with angles cos�1 !�A;1 and
cos�1 !�A;2, respectively. We expect that the time average
of bJJ, hbJJAi, tends to the plain � as t!1. From Fig. 10, it
seems that Bi � hbJJAi tends to ~!!�A;i=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~!!�A;1Þ

2 þ ð ~!!�A;2Þ
2

p
and ĴJA

tends to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~!!�A;1Þ

2 þ ð ~!!�A;2Þ
2

p
. However, it turned out that hbJJAi

did not converge in �. Therefore, it is difficult to identify B1

and B2 numerically.
As for the dependence of the convergence of !1 and !2 on

the time t1, we obtained the same result as that in the
Perceptron rule. That is, when t1 is larger than the time when
the student vector starts to rotate around B1 and B2, the
t � t1 dependences of !i are quite similar. See Fig. 11.

6. Summary and Discussion

First, we summarize the results of the single-teacher case.
We studied the output and the input noise models using the
Hebbian, Perceptron and AdaTron learning rules. Since we
obtained almost the same results in the output and the input
noise models, the following summary is for both cases
unless otherwise mentioned explicitly. In the Hebbian rule, it
has been found in a previous study13) that learning succeeds
in the sense that the student vector converges to the teacher
vector even if noise exists. On the other hand, in the
Perceptron and AdaTron rules, learning fails, but using the
optimal learning rate, we proved that !! 1 as t!1 in
the three learning rules. In the Perceptron and AdaTron
rules, we found that ! converges to a value less than 1 as
t!1. This implies that the student vector rotates around
the teacher vector with a constant angle. Thus, by taking the
average over time, we expected that the direction of the
student vector would converge to that of the teacher vector.
The numerical results supported this speculation. Further-
more, using the averaging method, we estimated the
parameters that characterize noise: k in the output noise
and � in the input noise. Furthermore, we studied the starting
time (t1) dependence of the convergence of learning. We
found that the behaviors of ! are quite similar when t1 is
larger than the time when the student vector starts to rotate
around the teacher vector. We found that the longer the
learning proceeds and the larger the number of samples in
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Fig. 10. Averaging method for AdaTron. r ¼ 0:6. The average is taken for t � 50. Symbols denote simulation data for N ¼ 1000. þ: averaging

(not normalized), square: averaging (normalized). Dashed curves and 
 denote the theoretical and numerical results for � ¼ 1 without averaging.

Left panel: Time dependence of !1 and !2. The theoretical results for ~!!�A;1 and ~!!�A;2 are also depicted. (solid line). Right panel: Time dependence of J.

The theoretical result for
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð!�A;1Þ

2 þ ð!�A;1Þ
2

p
is also depicted (dashed line).
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the average becomes, the closer ! approaches 1 and the
better the estimate of the parameter becomes. In conclusion,
the teacher vector B and the noise parameters k and � can be
identified using these methods. As for the asymptotic decay
of the generalization error, we found the asymptotic form ofeEE ¼ E � Emin using the optimal learning rate for the output
and input noise models and for the three learning rules. In
the output noise model, eEEopt / t�1=2 for the Hebbian and
Perceptron rules, whereas eEEopt / t�1=4 for the AdaTron rule.
On the other hand, in the input noise model, we obtainedeEEopt / t�1 for the three rules.

Next, let us summarize the results of the two-teacher case.
We studied a situation where signals are given by two
teachers B1 and B2 with a definite probability. We adopted
the Hebbian, Perceptron and AdaTron learning rules. For the
Hebbian rule, we obtained the analytical solutions for order
parameters and the generalization error. The student vector
converges to the space � spanned by B1 and B2. On the
other hand, for the Perceptron and AdaTron rules, it turned
out that the normalized student vectorbJJ did not converge to
�. As in the single-teacher case, we expected that by taking
the average of bJJ over time, the averaged vector hbJJi would
converge to �, and since hbJJPi and hbJJAi were theoretically
expected to converge to different vectors on �, B1 and B2

could be identified by these vectors. Indeed, we found that
hbJJPi converges to � as the number of samples in the average
increases. Using this vector, we could identify the proba-
bility that signals are sent by two teachers. On the other
hand, it turned out that hbJJAi does not converge to �,
although Bi � hbJJAi and jhbJJAij seem to converge to the
expected values, respectively. The reason that hbJJAi does not
converge to � is considered to be due to the fact that the
fluctuation of hbJJAi might be large and not uniform in the
orthogonal complement of �.

As for the starting time (t1) dependence of the conver-
gence of learning, as in the single-teacher case, we found
that the behavior of !i is quite similar when t1 is larger than
the time when the student vector starts to rotate around the
teacher vectors.

Next, let us discuss the results in this paper.

We compare the convergence speed of learning in the
single-teacher case. If noise does not exist, the asymptotic
form of eEEopt is expressed as eEEopt / t�1=2 for the Hebbian rule
and eEEopt / t�1 for the Perceptron and AdaTron rules, so the
convergence speed of learning is faster in the Perceptron and
AdaTron rules than in the Hebbian rule. On the other hand,
in the output noise case, the convergence speed of learning
is faster in the Hebbian and Perceptron rules than in the
AdaTron rule, whereas in the input noise case, it is of the
same order for all three rules. That is, the convergence speed
of learning depends on whether or not noise exists, and also
on the type of noise.

In this paper, we studied the single-teacher and two-
teacher cases. We can also consider a many-teacher case. Let
us assume that there are n teachers and a signal is produced
by the i-th teacher with a probability ri. For simplicity, let us
assume that the norm of the teacher vectors is 1 and that any
two teacher vectors are orthogonal to each other. Then, we
can prove that the student vector tends to the space �

spanned by n teachers as t!1 for the Hebbian rule.
We studied the averaging method numerically. It is

desirable to also study this method theoretically. Recently, a
theoretical study of the averaging method in the learning of a
linear Perceptron in the presence of noise has been
performed.14) Extending theories about nonlinear Percep-
trons will be an interesting subject.

Appendix: Proof of !! 1 as t!1 for ~�� ¼ ~��opt

The equation for ! in the common form for the three
learning rules is as follows:

d!

dt
¼ a ~���

1

2
b ~��2: ðA:1Þ

See Table A·I. ~��opt is determined by ð@=@ ~��Þðd!=dtÞ ¼ 0.
Thus, we obtain

~�� ¼
a

b
; ðA:2Þ

d!

dt
¼

a2

2b
: ðA:3Þ
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Therefore, if b 6¼ 0, d!=dt ¼ 0 is equivalent to a ¼ 0. b > 0

is easily proved for 0 < ! 	 1 for input and output noise
models. Since a / 1� !2, we obtain the unique stationary
state !� ¼ 1.
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Table A�I. a and b for each learning rule in output and input noise models.

Output noise model Hebbian Perceptron AdaTron

a k

ffiffiffiffi
2

�

r
ð1� !2Þ

kffiffiffiffiffiffi
2�
p ð1� !2Þ

k

�
ð1� !2Þ3=2

b ! !
1

2
�

k

�
sin�1 !

� �
!

1

2
�

k

�
!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� !2
p

þ sin�1 !
� �� �

Input noise model Hebbian Perceptron AdaTron

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�ð1þ �2Þ

r
ð1� !2Þ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ð1þ �2Þ

p ð1� !2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2 � !2
p

�ð1þ �2Þ
ð1� !2Þ

b !
!

2�
cos�1 !ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �2
p

� �
!

�
cos�1 !ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �2
p

� �
�
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1þ �2 � !2
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1þ �2
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