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paper, we combine students in the time domain and call it time-domain ensemble learning. We analyze
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space-domain ensemble learning.
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1. Introduction

Learning is the inference of the underlying rules that
dominate data generation using observed data. Observed
data are input–output pairs from a teacher and are called
examples. Learning can be roughly classified into batch
learning and on-line learning.1) In batch learning, given
examples are used more than once. In this paradigm, a
student will give the correct answers after training if that
student has adequate degree of freedom. However, a long
time and a large memory, in which many examples are
stored, are necessary. In contrast, in on-line learning,
examples used once are then discarded. In this case, a
student cannot give correct answers to all the examples
used in training. However, there are merits; for example, a
large memory for storing many examples is not necessary,
and it is possible to follow a time-variant teacher.

Recently, we2,3) have analyzed the generalization per-
formance of some models in a framework of on-line learning
using a statistical mechanical method.3–5) Ensemble learning
means to combine many rules or learning machines (called
students in this paper) that perform poorly; it has recently
attracted the attention of many researchers.2,6–9) The diver-
sity or variety of students is important in ensemble learning.
We showed that the three well-known rules, Hebbian
learning, perceptron learning, and AdaTron learning have
different characteristics in their affinities for ensemble
learning, that is ‘‘maintaining diversity among students’’.3)

In the analyses, the following points were proven subsidia-
rily.10–13) The student vector does not converge in one
direction but continues moving in an unlearnable case.14,15)

Therefore, we also analyzed the generalization performance
of a student supervised by a moving teacher that goes around
a true teacher.4) As a result, it was proven that the
generalization error of a student can be smaller than that
of a moving teacher, even if the student only uses examples
from the moving teacher. In actual human society, a teacher

observed by a student does not always present the correct
answer. In many cases, the teacher is learning and continues
to change. Therefore, the analysis of such a model is
interesting for considering the analogies between statistical
learning theories and actual human society.

In conventional ensemble learning, the generalization
performance is improved by combining students who have
diversities. On the other hand, a student does not always
converge in one direction but may continue moving in an
unlearnable model. Therefore, the generalization perform-
ance in such a model must be improved by combining
the student at different times, even if there is only one
student.12,13) Conventional ensemble learning combines
students in the space domain. On the other hand, we
introduce a method of combining the students in the time
domain; we call this time-domain ensemble learning. In this
paper, we analyze the generalization performance of the
time-domain ensemble learning using a statistical mechan-
ical method. We use a model in which both the teacher and
the student are linear perceptrons2) with noises. We obtain
the order parameters and generalization errors analytically
in a framework of on-line learning using a statistical
mechanical method.

2. Model

In this paper, we consider a teacher and a student. They
are linear perceptrons with the connection weights B and Jm,
respectively. Here, m denotes the time step. For simplicity,
the connection weights of the teacher and student are simply
called the teacher and student, respectively. Teacher B ¼
ðB1; . . . ;BNÞ, student Jm ¼ ðJm1 ; . . . ; JmN Þ, and input xm ¼
ðxm1 ; . . . ; xmNÞ are N-dimensional vectors. Each component Bi

of B is independently drawn from N ð0; 1Þ and fixed, where
N ð0; 1Þ denotes a Gaussian distribution with a mean of
zero and a variance of unity. Each component J0

i of the
initial value J0 of Jm is independently drawn from N ð0; 1Þ.
The direction cosine between Jm and B is Rm and that
between Jm and Jm

0
is qm;m

0
. Each component xmi of xm is

drawn from N ð0; 1=NÞ independently. Thus,�E-mail: miyoshi@kobe-kosen.ac.jp
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Bih i ¼ 0; Bið Þ2
� �

¼ 1; ð1Þ

J0
i

� �
¼ 0; J0

i

� �2D E
¼ 1; ð2Þ

xmi
� �
¼ 0; xmi

� �2D E
¼

1

N
; ð3Þ

Rm �
B � Jm

kBkkJmk
; ð4Þ

qm;m
0
�

Jm � Jm0

kJmkkJm0 k
; ð5Þ

where h�i denotes a mean.
Figure 1 illustrates the relationship among teacher B,

students Jm and Jm
0

and the direction cosines Rm;Rm0 , and
qm;m

0
.

In this paper, the thermodynamic limit N !1 is also
used. Therefore,

kBk ¼
ffiffiffiffi
N
p

; kJ0k ¼
ffiffiffiffi
N
p

; kxmk ¼ 1: ð6Þ

Generally, the norm kJmk of the student changes as the time
step proceeds. Therefore, the ratio lm of the norm to

ffiffiffiffi
N
p

is
introduced and is called the length of the student. That is,
kJmk ¼ lm

ffiffiffiffi
N
p

.
Both the teacher and the student are linear perceptrons.

Their outputs are vm þ nmB and umlm þ nmJ , respectively.
Here,

vm ¼ B � xm; ð7Þ
umlm ¼ Jm � xm; ð8Þ
nmB � N 0; �2

B

� �
; ð9Þ

nmJ � N 0; �2
J

� �
; ð10Þ

where N ð0; �2Þ denotes a Gaussian distribution with a mean
of zero and variance �2. That is, the outputs of the teacher
and student include independent Gaussian noises with
variances of �2

B and �2
J , respectively. Then, vm and um obey

Gaussian distributions with a mean of zero and a variance
of unity.

Let us define the error �mS between the teacher B and the
student Jm by the squared error of their outputs:

�mS �
1

2
vm þ nmB � umlm � nmJ
� �2

: ð11Þ

Student Jm adopts the gradient method as a learning rule
and uses input x and the output of teacher B for updates.
That is,

Jmþ1 ¼ Jm � �
@�mS
@Jm

ð12Þ

¼ Jm þ � vm þ nmB � umlm � nmJ
� �

xm; ð13Þ

where � denotes the learning rate of the student and is
constant. Generalizing the learning rule, eq. (13) can be
expressed as

Jmþ1 ¼ Jm þ f mxm; ð14Þ

where f denotes a function that represents the update
amount and is determined by the learning rule.

3. Theory

3.1 Generalization error
Ensemble learning means the improvement of perform-

ance by combining many students that perform poorly. On
the other hand, we use just one student and combine its
copies (hereafter called brothers) at different time steps.
Conventional ensemble learning combines students in the
space domain; on the other hand, we combine students in the
time domain. In this paper, K brothers Jm1 ; Jm2 ; . . . ; JmK are
combined. Here, m1 � m2 � � � � � mK . We use the squared
error � for the new input x. Here, it is assumed that the
Gaussian noises of eqs. (9) and (10) are independently added
to the teacher and each brother of the ensemble, respectively.
The weight of each brother Jmk of the ensemble satisfies
Ck > 0. That is, the error of the ensemble is

� ¼
1

2
B � xþ nB �

XK
k¼1

Ck J
mk � xþ nkð Þ

 !2

: ð15Þ

Here, nB � N 0; �2
B

� �
and nk � N 0; �2

J

� �
.

A goal of statistical learning theory is to theoretically
obtain generalization errors. Since the generalization error
is the mean of errors over the distribution of the new input x
and noises nB, nk, k ¼ 1; . . . ;K, the generalization error �g of
the ensemble is calculated as follows:

�g ¼
Z

dx dnB
YK
k¼1

dnk

 !
pðxÞpðnBÞ

YK
k¼1

pðnkÞ

 !
� ð16Þ

¼
Z

dv
YK
k¼1

duk

 !
dnB

YK
k¼1

dnk

 !
pðv; fukgÞpðnBÞ

�
YK
k¼1

pðnkÞ

 !
1

2
vþ nB �

XK
k¼1

Ck ukl
mk þ nkð Þ

 !2

ð17Þ

¼
1

2

�
1� 2

XK
k¼1

Ckl
mkRmk þ 2

XK
k¼1

XK
k0>k

CkCk0 l
mk lmk0qmk ;mk0

þ
XK
k¼1

C2
k ðl

mk Þ2 þ �2
B þ

XK
k¼1

C2
k�

2
J

�
; ð18Þ

where v ¼ B � x and ukl
mk ¼ Jmk � x. We performed integra-

tion using the following: v and uk obey N ð0; 1Þ. The
covariance between v and uk is Rmk , and that between uk
and uk0 is qmk ;mk0 . nB and nk are independent of other
probabilistic variables.

Fig. 1. Teacher B and students Jm and Jm
0
. Rm;Rm0 , and qm;m

0
are

direction cosines.
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3.2 Differential equations for order parameters and their
analytical solutions

In this paper, we examine the thermodynamic limit
N !1. Therefore, updates for eqs. (13) or (14) must be
executed OðNÞ times for the order parameters l, R, and q to
change by Oð1Þ. Thus, the continuous times t1; . . . ; tK , which
are the time steps m1; . . . ;mK normalized by the dimension
N, are introduced as the superscripts that represent the
learning process. To simplify the analysis, we introduced
the following auxiliary order parameters:

rt � ltRt; ð19Þ

Qt;t0 � ltlt
0
qt;t
0
: ð20Þ

The simultaneous differential equations in deterministic
forms,16) which describe the dynamical behaviors of order
parameters, are obtained on the basis of the self-averaging
of thermodynamic limits as follows:

dlt

dt
¼ h f tuti þ

hð f tÞ2i
2lt

; ð21Þ

drt

dt
¼ h f tvti; ð22Þ

dQt;t0

dt0
¼ lth f t

0
�uuti; ð23Þ

where t0 	 t and �uut ¼ xt0 � Jt=lt � N ð0; 1Þ.
Since linear perceptrons are used in this paper, the sample

averages that appear in the above equations can be easily
calculated as follows:

h f tuti ¼ �ðrt=lt � ltÞ; ð24Þ
h f tvti ¼ �ð1� rtÞ; ð25Þ
hð f tÞ2i ¼ �2ð1þ �2

B þ �
2
J þ ðl

tÞ2 � 2rtÞ; ð26Þ

h f t
0
�uuti ¼ � rt � Qt;t0

� �
=lt: ð27Þ

Since all components of teacher B and initial student
J0 are independently drawn from N ð0; 1Þ and because
the thermodynamic limit N !1 is also used, they are
orthogonal to each other in the initial state. That is,

R0 ¼ 0: ð28Þ

In addition,

l0 ¼ 1 ð29Þ

and

Qt;t ¼ ðltÞ2 ð30Þ

using eqs. (5) and (20). Using these initial conditions, we
can analytically solve the simultaneous differential equations
(21)–(27) as follows:

rt ¼ 1� e��t; ð31Þ

ðltÞ2 ¼ 1þ
�

2� �
�2
B þ �

2
J

� �
� 2e��t

þ 2�
�

2� �
�2
B þ �

2
J

� �� �
e�ð��2Þt; ð32Þ

Qt;t0 ¼ 1� e��t þ e��t
0
þ ðltÞ2 � 1
� �

e��ðt
0�tÞ: ð33Þ

Substituting eqs. (31)–(33) into eq. (18), the generaliza-
tion error �g can be analytically obtained as a function of
time tk, k ¼ 1; . . . ;K as follows:

�g ¼
1

2

"
1� 2

XK
k¼1

Ck 1� e��tk
� �

þ 2
XK
k¼1

XK
k0>k

CkCk0
�
1� e��tk þ e��tk0

þ ���2 � 2e��tk þ 2� ���2
� �

e�ð��2Þtk
� �

e��ðtk0 �tkÞ
�

þ
XK
k¼1

C2
k 1þ ���2 � 2e��tk þ 2� ���2

� �
e�ð��2Þtk

� �

þ �2
B þ

XK
k¼1

C2
k�

2
J

#
; ð34Þ

���2 ¼
�

2� �
�2
B þ �

2
J

� �
: ð35Þ

4. Results and Discussion

The dynamical behaviors of lt and Rt are analytically
obtained using eqs. (19), (31), and (32). Figures 2 and 3
show some examples of the analytical results and the
corresponding simulation results for N ¼ 2000. In these
figures, the curves represent theoretical results, and the
symbols represent simulation results. Figure 2 shows the
results of �2

B ¼ �2
J ¼ 0:0 and no noise. Figure 3 shows the

results of �2
B ¼ �2

J ¼ 0:2.
Focusing on the signs of the powers of the exponential

functions in eq. (32), we can see that lt diverges if the
learning rate satisfies 0 > � or � > 2. lt converges to

l1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ���2

p
ð36Þ
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Fig. 2. Dynamical behaviors of (a) lt and (b) Rt. Theory and computer

simulations. �2
B ¼ �2

J ¼ 0:0.
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if 0 < � < 2. Equations (19) and (31) imply that Rt

converges to

R1 ¼ 1=l1: ð37Þ

Therefore, we can see that l1 ¼ R1 ¼ 1 in the case of no
noise, and l1 > 1 and R1 < 1 in the case of noise.

Since eq. (32) implies

dðltÞ2

dt

				
t¼0

< 0 when � <
2

2þ �2
B þ �2

J

,

¼ 0 when � ¼
2

2þ �2
B þ �2

J

,

> 0 when � >
2

2þ �2
B þ �2

J

,

8>>>>>>><
>>>>>>>:

ð38Þ

the equation that is a function of t

dðltÞ2

dt
¼ 0 ð39Þ

has only one solution

t ¼
1

�ð1� �Þ
ln 2�

�

2
2þ �2

B þ �
2
J

� �� �
; ð40Þ

if the learning rate satisfies 0 < � < 4=ð2þ �2
B þ �2

J Þ and
� 6¼ 1. Therefore, lt asymptotically approaches unity after
becoming larger than unity if 0 < � < 1, and lt asymptoti-
cally approaches unity after becoming smaller than unity if
1 < � < 2, as shown in Fig. 2(a).

Equations (19), (31), and (32) imply

dRt

dt

				
t¼0

¼ �: ð41Þ

Therefore, the larger � is, the faster R increases, as shown in
Figs. 2(b) and 3(b). However, eqs. (19), (31), (32), (36), and
(37) imply

R1 � Rt ¼
1

l1
�

rt

lt
ð42Þ

! 1þ ���2
� �

���2e��t þ
2� ���2

2
e�ð��2Þt

� �
; ð43Þ

when t is large. Since eq. (43) is Oðe��tÞ if 0 < � � 1 and
Oðe�ð��2ÞtÞ ¼ Oðeðð��1Þ2�1ÞtÞ if 1 < � < 2, the convergence
of Rt is fastest when the learning rate satisfies � ¼ 1. This
can be confirmed in Figs. 2(b) and 3(b). This phenomenon
can be understood by the fact that � ¼ 1 is a special
condition, for which the student uses up the information
obtained from input x.5)

We analytically obtained the dynamical behaviors of the
generalization error �g and the direction cosine q using
eqs. (20) and (32)–(35). Figures 4 and 5 show some
examples of the analytical results and the corresponding
simulation results for N ¼ 2000. In these figures, the curves
represent theoretical results, and the symbols represent
simulation results. �g was calculated for the simplest case,
that is, K ¼ 2, C1 ¼ C2 ¼ 1=2. Other conditions are � ¼ 1:0
and �2

B ¼ �2
J ¼ 0:2. In the computer simulation, �g was

obtained by averaging the squared errors for 104 random
inputs at each time step.

(a)

 0.8
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Fig. 3. Dynamical behaviors of (a) lt and (b) Rt. Theory and computer

simulations. �2
B ¼ �2

J ¼ 0:2. � ¼ 1:8, 1.6, 1.4, 1.2, 1.0, 0.8, 0.6, 0.4, and

0.2 from the top.
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Fig. 4. Relationships between t2 � t1 and �g (a), qt1 ;t2 (b) in the case of

constant leading time t1. Theory and computer simulation. � ¼ 1:0, �2
B ¼

�2
J ¼ 0:2.
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Figure 4 shows the relationships between t2 � t1 and �g,
qt1;t2 in the case of a constant t1. When t2 � t1 increases, �g
increases monotonically, remains constant, or decreases
monotonically depending on the value of �. We prove this
by the following. Equation (34) implies that

�gðK¼1Þ ¼
1

2

�
�

2� �
�2
B þ �

2
J

� �
þ 2�

�

2� �
�2
B þ �

2
J

� �� �
e�ð��2Þt

�
:

ð44Þ

Therefore, �gðK¼1Þ decreases monotonically, remains con-
stant, or increases monotonically as time t proceeds. The
necessary and sufficient conditions for the above three
phenomena are

� <
4

2þ �2
B þ �2

J

; ð45Þ

� ¼
4

2þ �2
B þ �2

J

; ð46Þ

� >
4

2þ �2
B þ �2

J

; ð47Þ

respectively. Since the output of the ensemble is the weighted
sum of the outputs of the brothers, the generalization error for
K > 1 also decreases monotonically, remains constant, or
increases monotonically. The necessary and sufficient con-
ditions for these three phenomena are also shown in eqs.
(45)–(47). Since the condition of Fig. 4(a) is in agreement
with eq. (45), the generalization error decreases monotoni-

cally. Equations (20), (32), (33), and (36) imply that in the
case of t1 ¼ 0, qt1;t2 asymptotically approaches zero when
t2 � t1!1 as shown in Fig. 4(b). This means that after a
long time the student is orthogonal with its initial condition.

Since the order parameters and �g were explicitly obtained
as functions of t and t0 in eqs. (31)–(34), the relationships
between t1 and �g, qt;t

0
in the case of a constant time interval

of the brothers or constant tkþ1 � tk can be calculated.
Figure 5 shows the relationships between t1 and �g, qt1;t2 in
the case of constant t2 � t1. For the same reason as in
Fig. 4(a), the generalization error �g also decreases monot-
onically in Fig. 5(a). Figure 5(b) shows that qt1;t2 converges
to a value smaller than unity in the case of t2 � t1 6¼ 0:0.
This means that the student continues to move after the order
parameters l, R, and q reach a steady state.

In Figs. 4 and 5, the generalization error �g and the
direction cosine qt1;t2 seem to almost reach a steady state by
t2 � t1 > 5 or t1 > 5. The behaviors of �g when the leading
time t1 !1 or the time interval tkþ1 � tk !1 can be
theoretically obtained, since the generalization error and
order parameters were analytically obtained as functions of
tk, k ¼ 1; . . . ;K, as shown in eq. (34).

Equations (32) and (34) imply that, at first, ðltÞ2 diverges
unless 0 < � < 2. Therefore, the generalization error di-
verges unless 0 < � < 2. If 0 < � < 2, the generalization
error can be discussed as follows:

When t1!1, from eqs. (34) and (35) we obtain

�g ¼
1

2

"
1� 2

XK
k¼1

Ck þ 2
XK
k¼1

XK
k0>k

CkCk0

� 1þ
�

2� �
�2
B þ �

2
J

� �
e��ðtk0�tkÞ

� �

þ
XK
k¼1

C2
k 1þ

�

2� �
�2
B þ �

2
J

� �� �

þ �2
B þ

XK
k¼1

C2
k�

2
J

#
: ð48Þ

In addition, when the time interval tkþ1 � tk !1, from
eq. (48) we obtain

�g ¼
1

2

"
1� 2

XK
k¼1

Ck þ 2
XK
k¼1

XK
k0>k

CkCk0

þ
XK
k¼1

C2
k 1þ

�

2� �
�2
B þ �

2
J

� �� �
þ �2

B þ
XK
k¼1

C2
k�

2
J

#
:

ð49Þ
Equation (49) shows that the generalization error decreas-

es as the learning rate � decreases regardless of K when
t1 !1 and tkþ1 � tk !1.

In addition, when the weights are uniform or Ck ¼ C ¼
1=K, from eq. (49) we obtain

�g ¼
1

2K

�

2� �
�2
B þ �

2
J

� �� �
þ

1

2
�2
B þ

1

K
�2
J

� �
: ð50Þ

Here, considering the special case K ¼ 1, we obtain

�g ¼
1

2

�

2� �
�2
B þ �

2
J

� �� �
þ

1

2
�2
B þ �

2
J

� �
: ð51Þ

If B ¼ Jt1 , the generalization error must equal the residual
error
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time interval t2 � t1. Theory and computer simulation. � ¼ 1:0, �2
B ¼
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J ¼ 0:2.
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�g ¼
1

2
�2
B þ �

2
J

� �
ð52Þ

caused by noise from eq. (15), which is the definition of
error. Therefore, the difference between eqs. (51) and (52)

1

2

�

2� �
�2
B þ �

2
J

� �� �
ð53Þ

is caused by the disagreement between B and Jt1 .
Next, let us consider another special case, K ¼ 1. If and

only if

B ¼ lim
K!1

1

K

XK
k¼1

Jtk ; ð54Þ

the generalization error must equal the residual error

�g ¼
1

2
�2
B ð55Þ

caused by noise from eq. (15), which is the definition of
error. Equation (54) is true, since eq. (50) equals eq. (55)
when K ¼ 1.

In addition, if �2
B ¼ �2

J ¼ �2, eq. (50) changes as follows:

�g ¼
1

2K

2þ �
2� �

þ
1

2

� �
�2: ð56Þ

The relationship between the learning rate � and the
generalization error �g can be analytically obtained using
eq. (56) when both the leading time t1 and the time interval
tkþ1 � tk are sufficiently large, and the uniform weight Ck ¼
C ¼ 1=K and �2

B ¼ �2
J ¼ 0:5. Figure 6 shows the analytical

results and the corresponding simulation results. In the
computer simulation, with N ¼ 2000, leading time t1 ¼ 10,
and time interval tkþ1 � tk ¼ 10 (t1 ¼ tkþ1 � tk ¼ 20 when
� ¼ 0:2), we obtained �g by averaging the squared errors for
104 random inputs at each time step. Figure 6 confirms the
following. The generalization error decreases as the learning
rate � decreases. The generalization error decreases and
converges to the residual error �2

B=2 as K increases.
In addition, if the learning rate satisfies � ¼ 1, eq. (56)

becomes

�g ¼
3

2K
þ

1

2

� �
�2: ð57Þ

Equation (57) refers to the generalization error �g of
K ¼ 1, which is 1=4 that of K ¼ 1 when the learning rate
satisfies � ¼ 1, uniform weights Ck ¼ 1=K, �2

B ¼ �2
J , t1!

1, and tk0 � tk !1. Since the generalizaion error �g of
conventional space-domain ensemble learning with K ¼ 1,
� ¼ 1, Ck ¼ 1=K and �2

B ¼ �2
J is 1=2 that of K ¼ 1,2) we

can say that time-domain ensemble learning is twice as
effective as conventional space-domain ensemble learning.
We can explain this difference as follows: In conventional
space-domain ensemble learning, the similarities among
students become high, since all students use the same
examples for learning. On the other hand, in time-domain
ensemble learning, the similarities among brothers keep
low, since all brothers use almost totally different examples
for learning.

5. Conclusion and Future Work

We analyzed the generalization performance of time-
domain ensemble learning in the framework of on-line
learning using a statistical mechanical method. We used a
model in which both the teacher and the student were linear
perceptrons with noises. We showed that time-domain
ensemble learning is twice as effective as conventional
space-domain ensemble learning.

It would be interesting to analyze the time-domain
ensemble learning of a model in which the teacher and
student are nonlinear perceptrons.12,13) In that case, it would
be difficult to analytically obtain the generalization error and
order parameters. However, it is expected that the nonlinear
model will show qualitatively different and interesting
behaviors. Analysis of the nonlinear model is our future aim.
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Fig. 6. Relationship between learning rate � and generalization error �g,

when both leading time t1 and time interval tkþ1 � tk are sufficiently

large. Theory and computer simulation. Ck ¼ C ¼ 1=K and �2
B ¼ �2

J ¼
0:5.
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