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We examine a previouly introduced attractor neural network model that explains the persistent
activities of neurons in the anterior ventral temporal cortex of the brain. In this model, the coexistence of
several attractors including correlated attractors was reported in the cases of finite and infinite loading. In
this paper, by means of a statistical mechanical method, we study the statics and dynamics of the model
in both finite and extensive loading, mainly focusing on the retrieval properties of the Hopfield and
correlated attractors. In the extensive loading case, we derive the evolution equations by the dynamical
replica theory. We found several characteristic temporal behaviours, both in the finite and extensive
loading cases. The theoretical results were confirmed by numerical simulations.
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1. Introducion

The attractor neural network model has been considered a
plausible model for memory processing in the brain. Many
experimental findings implying its existence have been
reported. Among them, Miyashita and his group reported the
persistent activities of neurons in the anterior ventral
temporal (AVT) cortex.1,2) They trained monkeys to recog-
nize and match a set of 100 colored fractal patterns in the
Delayed Match to Sample (DMS) paradigm. Miyashita and
Chang reported that the neurons in the AVT are highly
selective toward a few of the 100 colored fractal patterns,
and that the activities of these neurons persist for 16 s after
the removal of the presented stimulus.2) Miyashita studied
development of this selectivity, and found that serial
positions number of stimuli during learning are converted
into the spatial correlation of the neural activities.1)

To explain these experiments, Griniasty et al. proposed a
model for an attractor neural network.3) By analysing
equilibrium states of this model in the finite loading case,
they found not only stored patterns (Hopfield attractors) but
also patterns which have overlap with stored patterns
(correlated attractors). For example, when the number of
patterns is 13, correlated attractors are expressed by m ¼
1
27

tð77; 51; 13; 3; 1; 0; 0; 0; 0; 1; 3; 13; 51Þ and its cyclic rota-
tions, whereas Hopfield attractors are expressed by m ¼
tð1; 0; . . . ; 0Þ and its cyclic rotations. Here, m is the overlap
vector m ¼ tðm1;m2; . . . ;mcÞ, of which component m� is the
overlap between the state of neurons and the �-th pattern. t
denotes transposition. See eq. (6). Griniasty et al. found that
the correlation between correlated attractors dicreases as the
separation in the sequence of the patterns to which the
attractors belong increases. These results support the work
done by Miyashita.

In recent years, we have studied the statics and dynamics
of the model introduced by Griniasty et al. in the finite
loading case. As for the statics, we investigated equilibrium
states and found the coexistence of several attractors such as
Hopfield attractors, correlated attractors, and mixed states of
several patterns in several parameter regions. The coex-
istence of attractors was also reported by Shiino et al.4,5) and

by Fukai et al.6) As for the dynamics, we investigated the
transient behaviour by performing numerical calculations of
the overlap dynamics derived theoretically and by numerical
simulations. In particular, we studied what happens when a
Hopfield attractor and a correlated attractor coexist and
when a Hopfield attractor does not exist and a correlated
attractor does exist. In the former case, we studied the basin
of attraction and in the latter case, we found that the
trajectory initially approaches the state where the Hopfield
attractor existed, but finally it tends toward the correlated
attractor. We found that the results by numerical calculations
of the overlap dynamics and the results by numerical
simulations agree qualitatively.

The coexistence of multiple attractors and the dynamical
behaviour obtained in the finite loading case are significant.
However, the situation of the finite loading seems to be
unrealistic. Thus, it is necessary to investigate whether the
results in the finite loading case are obtained when applied
practically, i.e. in the extensive loading case.

In this paper, we study the model introduced by Griniasty
et al. by the statistical mechanical method, mainly focusing
on the extensive loading case. In the extensive loading case,
as to the study of the equilibrium states, Cugliandolo et al.
derived the saddle point equations (S.P.E.) for order
parameters using the replica method.7) They identified not
only the Hopfield attractors but also the correlated attractors.
We have solved the saddle point equations numerically by
scanning parameters and found that there are parameter
regions where several attractors coexist. The coexistence of
multiple attractors was found by Shiino et al. in the present
model as well.4,5) As for the dynamical behaviour, we have
derived evolution equations for order parameters by using
the dynamical replica theory by Laughton and Coolen.8) As
in the finite loading case, we have studied the dynamical
behaviour in a coexistence region of a Hopfield attractor and
a correlated attractor, and also in a region where a Hopfield
attractor does not exist but a correlated attractor does exist.
From these studies, we have obtained qualitatively similar
results to those in the finite loading case.

In the next section, we explain the present model. Then,
we summarize the theory and results for the finite loading
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case in §3. In §4, the extensive loading case is examined.
The summary and discussion are given in §5.

2. Model

Let us explain the model. The instantaneous state of each
neuron is expressed by si which takes �1, where i labels the
neuron (i ¼ 1; . . . ;N), and the time evolution is given by

siðt þ 1Þ ¼ signðhiðtÞÞ; ð1Þ

where

hiðtÞ ¼
X
jð6¼iÞ

JijsjðtÞ; ð2Þ

and Jij is the strength of the synaptic connection from the j-th
neuron to the i-th neuron. The stochastic dynamics is also
taken into consideration by introducing temperature T , that
is, the probability that siðt þ 1Þ takes �1 is given by

Prob½siðt þ 1Þ� ¼
1� tanhð�hiðtÞÞ

2
; ð3Þ

where � ¼ 1=T . In the present model, the synaptic weight Jij
is defined as

Jij ¼
1

N

Xc
�¼1

ð��i �
�
j þ a��i �

��1
j þ a��i �

�þ1
j Þ

¼
1

N

X
�;�

��i A���
�
j for i 6¼ j; ð4Þ

Jii ¼ 0; �0i � �ci ; �cþ1
i � �1i ;

where ��i represents the value of i-th neuron for �-th pattern
�� � tð��1 ; . . . ; �

�
NÞ and it takes value þ1 or �1 with a

probability of 1=2. c is the total number of patterns. A is a
c� c matrix defined as

A � fA��g ¼

1 a 0 � � � 0 a

a 1 a 0 � � � 0

0 a 1 a 0 0

0 0 a 1 a 0

..

. . .
. . .

. . .
. . .

. ..
.

a 0 � � � 0 a 1

0
BBBBBBBBB@

1
CCCCCCCCCA
: ð5Þ

The order parameter is the overlap vector m ¼ tðm1;m2; . . . ;
mcÞ, of which component m� is the overlap between the state
of neurons s ¼ tðs1; . . . ; sNÞ and the �-th pattern ��, that is,

m� ¼
1

N

XN
i¼1

si�
�
i : ð6Þ

3. Finite Loading Case

In this section, we study the finite loading case of the
model described by eqs. (1)–(4). That is, we consider what
happens when N � 1 and � ¼ c

N
� 1.

3.1 Theory
To study the equilibrium state, we consider the following

Hamiltonian H.

H ¼ �
1

2

X
i 6¼j

Jijsisj ð7Þ

¼ �
1

2N

X
i6¼j

X
�;�

��i A���
�
j sisj: ð8Þ

We calculate the free energy of the system

f ¼ �
1

�N
ln Z; Z ¼ Trs e

��H ;

where Trs denotes the summation with respect to si (i ¼ 1;
. . . ;N). By using the saddle point method, we obtain9)

f ¼ �
�

2

X
�;�

m�A��m� � i
Xc
�¼1

m�m̂m�

� ln 2 cosh �i
Xc
�¼1

m̂m��
�

 !( )" #
�

;

ð9Þ

where � ¼ tð�1; �2; . . . ; �cÞ and ½A�� is the average over �, that
is ½A�� ¼ 1

2c

P
f��¼�1g A. Then, the S.P.E. becomes

m̂m� ¼ i�
Xc
�¼1

A��m�; ð10Þ

m� ¼ �� tanh �
Xc
�;�0¼1

��A��0m�0

 !" #
�

: ð11Þ

The physical meaning of m� is the overlap between the
equilibrium state and the �-th pattern,

m� ¼
1

N

XN
i¼1

��i hsii; ð12Þ

where hsii is the thermal average of the i-th neuron.
Next, we derive the evolution equation of the system. Let

us consider the probability P tðmÞ that at time t the state s has
the overlap m� with �-th pattern �� for � ¼ 1; . . . ; c

P tðmÞ ¼ Trs ptðsÞ
Yc
�¼1

�ðm� � m�ðsÞÞ; ð13Þ

m�ðsÞ ¼
1

N

XN
i¼1

��i si; ð14Þ

where ptðsÞ is the probability that the system takes the state s
at time t. We assume that the transition probability wiðsÞ
from the state s ¼ ðs1; . . . ; si; . . . ; sNÞ to the state Fis ¼ ðs1;
. . . ;�si; . . . ; sNÞ takes the following form

wiðsÞ ¼
1� si tanhf�hiðsÞg

2
; ð15Þ

where Fi is the flip operator of the i-th neuron and hiðsÞ is
expressed as

hiðsÞ ¼
XN
jð6¼iÞ

Jijsj ’
X
�;�	c

��i A��m�ðsÞ: ð16Þ

The master equation for ptðsÞ is given by

d

dt
ptðsÞ ¼

XN
i¼1

fwiðFisÞptðFisÞ � wiðsÞptðsÞg: ð17Þ

Then, using asynchronous dynamics, we obtain the evolution
equations for the overlap m as

d

dt
m ¼ �mþ ½� tanhð� t�AmÞ��: ð18Þ

The equation for the stationary state of eq. (18) agrees to the
eq. (11) for the equilibrium state.
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3.2 Results
c is finite and we put c ¼ 13 as in ref. 7, becasuse the

correlated attractors obtained by Amit et al. have non-zero
values up to their fifth nearest neighbours.

3.2.1 The equilibrium state
We solved the S.P.E. (11) numerically and found the

coexistence of several attractors such as the Hopfield
attractors, correlated attractors, and mixed states of several
patterns in several parameter regions. For example, we show
the result for a ¼ 0:4 in Fig. 1. The solid curve denotes the
Hopfield attractor. It exists up to T ’ 0:1. The dashed curves
denote a correlated attractor. For this attractor, there is the
following symmetry

m2 ¼ m13; m3 ¼ m12; . . . ;m7 ¼ m8:

This attractor exists up to T ’ 0:25. It has been considered
that correlated attractors exist only for a > 0:5.7) However,
we found that they exist even for a < 0:5. As is seen from
the figure, up to T ’ 0:1, both the Hopfield attractor and the
correlated attractor exist. Further, we found that the mixed
states of three patterns ��, ��þ1 and ��þ2 (which are not
drawn in Fig. 1) exist up to T ’ 0:05 and the mixed state of
13 patterns exists up to T ’ 1:7.

3.2.2 Dynamics
First, we investigate the case where several attractors

coexist. For example, for a ¼ 0:4 and T ¼ 0:04, a Hopfield
attractor, a correlated attractor, mixed states of three patterns
and a mixed state of 13 patterns coexist. For this parameter,
we investigate the basin of attraction of these attractors by
using overlap dynamics [eq. (18)] and numerical simula-
tions. In the numerical integrations of eq. (18), we set the
initial condition as

m�ðt ¼ 0Þ ¼ m0��;1; � ¼ 1; . . . ; c: ð19Þ

On the other hand, in the numerical simulations, we generate
an initial state sð0Þ according to the following probability,

Prob½si ¼ �1� ¼
1� m0�

1
i

2
: ð20Þ

When N ! 1, the overlap m� between sð0Þ and �� satisfies
the relation (19).

In Fig. 2, we show the results by numerical integrations
and those by numerical simulations. In Fig. 3, we compare
the results by numerical integrations and those by numerical
simulations in more detail. As is shown in Fig. 3(a), in the
numerical integrations, when the initial overlap with the
pattern 1, m0, is 0.15, the trajectory tends toward the
correlated attractor and the trajectory with m0 ¼ 0:16 tends
toward the Hopfield attractor. That is, the boundary between
the basin of attraction for the Hopfield attractor and that for
the correlated attractor, mc

0, is between 0.15 and 0.16. We
show the results of the simulations in Fig. 3(b). When m0 is
0.16, the trajectory tends toward the correlated attractor and
when m0 is 0.17, the trajectory tends toward the Hopfield
attractor. From these results, we note that even if the
trajectories finally tend toward the correlated attractor, they
initially approach the Hopfield attractor.

Next, we investigate the case where a Hopfield attractor
does not exist but a correlated attractor exists, which is
shown in Fig. 4. As the figures show, both in the numerical
integrations of eq. (18) and numerical simulations, we found
that for m0 < 1, the trajectory initially approaches the state
where the Hopfield attractor existed, but finally it tends
toward the correlated attractor.

In the next section, we study the extensive loading case to
see whether the characteristic feature in the finite loading
case such as the coexistence of multiple attractors and
characteristic temporal behaviour continues to exist or not.
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Fig. 1. Equilibrium states in finite loading case. a ¼ 0:4 and c ¼ 13. The

abscissa is T and the ordinate is m� (� ¼ 1; . . . ; 7). Solid curve: Hopfield

attractor. Dashed curves: correlated attractor. Dot-dash-curve: mixed state

of thirteen patterns.
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Fig. 2. Results of numerical integrations and numerical simulations for

the finite loading case. a ¼ 0:4, T ¼ 0:04 and c ¼ 13. Initial condition is

m ¼ ðm0; 0; . . . ; 0Þ and m0 ¼ 0:1; 0:2; . . . ; 1:0. Dashed curves: simulation

for N ¼ 60; 000. Solid curves: theory. (a) Trajectory in space of ðm1;m2Þ.
C: correlated attractor. H: Hopfield attractor. (b) Time evolution of m1.
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4. Extensive Loading Case

4.1 Theroy
As an example of an extensive loading case, we consider

the following synaptic weight Jij,

Jij ¼
1

N

Xc
�¼1

ð��i �
�
j þ a��i �

��1
j þ a��i �

�þ1
j Þ þ

Xp
�¼cþ1

��i �
�
j

( )

for i 6¼ j;

Jii ¼ 0; �0i � �ci ; �cþ1
i � �1i :

c is the number of condensed patterns and we set c ¼ 13. p is
the total number of patterns and we consider the case that
� ¼ p

N
is finite. We assume that ��i and ��i take þ1 or �1

with a probability of 1=2. The overlap m�ðsÞ between the
state of neurons s and the �-th pattern �� is defined as

m�ðsÞ ¼

1

N

XN
i¼1

si�
�
i for � ¼ 1; . . . ; c,

1

N

XN
i¼1

si�
�
i for � ¼ cþ 1; . . . ; p.

8>>>><
>>>>:

The cross-talk noise ziðsÞ is defined as

ziðsÞ �
X
�>c

��i m�ðsÞ:

As order parameters, we define m ¼ tðm1;m2; . . . ;mcÞ and
r ¼ 1

�

Pp
�¼cþ1ðm�ðsÞÞ2 where �r is the variance of the cross-

talk noise.

4.1.1 The equilibrium states
By using the replica method, the free energy f for the

replica symmetric (RS) solution7) is given as

f ¼
1

2
tmAmþ

�

2�
lnð1� �þ �qÞ �

�q

1� �þ �q

� �

þ
��

2
rð1� qÞ

� T

Z
Dz lnf2 cosh �ð

ffiffiffiffiffi
�r

p
zþ t�AmÞg

� �
�

; ð21Þ

where � ¼ tð�1; . . . ; �cÞ and ½A�� is the average over �, that is,
1
2c
�f��¼�1gA. The S.P.E. for m, q and r are given by

m ¼ �

Z
Dz tanh�ðt�Amþ

ffiffiffiffiffi
�r

p
zÞ

� �
�

; ð22Þ

q ¼
Z

Dz tanh2 �ðt�Amþ
ffiffiffiffiffi
�r

p
zÞ

� �
�

; ð23Þ

r ¼
q

ð1� cÞ2
; ð24Þ
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Fig. 3. Results of numerical integrations (a) and numerical simulations (b)

for finite loading case. a ¼ 0:4, T ¼ 0:04 and c ¼ 13. Initial condition is

m ¼ ðm0; 0; . . . ; 0Þ. (a) Dashed curve: m0 ¼ 0:15. Trajectory tends toward

correlated attractor. Solid curve: m0 ¼ 0:16. Trajectory tends toward

Hopfield attractor. (b) N ¼ 60; 000. Dashed curve: m0 ¼ 0:16. Trajectory
tends toward correlated attractor. Solid curve: m0 ¼ 0:17. Trajectory

tends toward Hopfield attractor.
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Fig. 4. Results of numerical integrations and numerical simulations for

finite loading case. a ¼ 0:4, T ¼ 0:15 and c ¼ 13. Dashed curves:

simulation for N ¼ 60; 000. Solid curves: theory. (a) Trajectory in space

of ðm1;m2Þ. C: correlated attractor. H: point where Hopfield attractor

existed. (b) Time evolution of m1.
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where c � �ð1� qÞ, Dz ¼ dze�z2=2=
ffiffiffiffiffiffi
2	

p
and A is the c� c

matrix which is defined in eq. (5). For T ¼ 0, these
equations become

c ¼
ffiffiffiffiffiffiffiffiffi
2

	�r

r
exp �

t�Amffiffiffiffiffiffiffiffi
2�r

p
� �2

( )" #
�

; ð25Þ

m ¼ �2 �H
t�Amffiffiffiffiffi

�r
p

� �� �
�

; ð26Þ

r ¼
1

ð1� cÞ2
; ð27Þ

where

HðxÞ ¼
Z 1

x

dtffiffiffiffiffiffi
2	

p e�t2=2:

4.1.2 Dynamics
As for the dynamics, we derive the evolution equations for

ðm; rÞ using the dynamical replica theory (DRT).8) We
assume that the same transition probability wiðsÞ as in the
finite loading case, but in the present case, hiðsÞ is expressed
as

hiðsÞ ¼
X
�;�	c

��i A��m�ðsÞ þ ziðsÞ: ð28Þ

The master equation for ptðsÞ is the same as before. Using
asynchronous dynamics, we obtain the evolution equations
for the overlap m and the variance of the cross-talk noise
�rðsÞ, assuming the self-averaging in the limit of N ! 1.
Then, we obtain

d

dt
m ¼ �mþ

Z
dz½D�½z�� tanh�ðt�Amþ zÞ��; ð29Þ

d

dt
r ¼ �r þ 1þ

1

�

Z
dz½D�½z�z tanh�ðt�Amþ zÞ��; ð30Þ

where D�½z� is the probability density function of the cross-
talk noise ziðsÞ,

D�½z� � 2c
1

N

X
i

�ðz� ziðsÞÞ���i

* +
m;r;t

;

Z
dz½D�½z��� ¼ 1;

where �i ¼ tð�1i ; . . . ; �ci Þ. h�im;r;t denotes the subshell aver-
age

h�im;r;t ¼

X
s

ptðsÞ�ðm�mðsÞÞ�ðr � rðsÞÞ�ðsÞX
s

ptðsÞ�ðm�mðsÞÞ�ðr � rðsÞÞ
:

Here, to obtain closed equations, we assume the following:
(1) The time evolutions of the order parameters ðm; rÞ have

the self-averaging property with respect to the average
over the variables ��i .

(2) The probability distribution of the micro variable s is
independent of time and is uniform in the subshell
where the macro variables ðm; rÞ have the same values.

Then, we obtain the closed equations for ðm; rÞ using the
replica method under the RS ansatz,

d

dt
m ¼ �mþ

"
�

Z
Dx

Z
Dy

� 1� tanh t��þ y

ffiffiffiffiffiffiffiffi
�

2
�

s
� þ

�2ffiffiffiffiffi
2


p
�
x

 !( )

� tanh �ðt�Amþ U�Þ

#
�

; ð31Þ

1

2

d

dt
r ¼ �r þ 1þ

"Z
Dx

Z
Dy

1

�

� 1� tanh t��þ y

ffiffiffiffiffiffiffiffi
�

2
�

s
� þ

�2ffiffiffiffiffi
2


p
�
x

 !( )

� U� tanh �ðt�Amþ U�Þ

#
�

; ð32Þ

where


 ¼
�r

2
; � ¼

��ð1� qÞ
1� �ð1� qÞ

; U�ðxÞ ¼
ffiffiffiffiffi
2


p
x��:

When ðm; rÞ are given, the parameters � , �, q and � are
determined using the following equations.

� ¼
�
ffiffiffiffiffiffi
�q

p

1� �ð1� qÞ
; ð33Þ

r ¼
1� �ð1� qÞ2

½1� �ð1� qÞ�2
; ð34Þ

q ¼
Z

Dw tanh2ðt��þ �wÞ
� �

�

; ð35Þ

m ¼
Z

Dw� tanhðt��þ �wÞ
� �

�

: ð36Þ

From eq. (34), � is given by

� ¼
1

2rð1� qÞ
½2r � 1þ q�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� qÞ2 þ 4rq

q
� 
 0: ð37Þ

In particular, the evolution equations for T ¼ 0 is given by

d

dt
m ¼ �mþ

�
�

Z
Dy

�Z 1

0

duffiffiffiffiffiffi
2	

p e�
1
2
ðuþx�Þ2

�
�
1� tanhð�ðuþ x�; y; �ÞÞ

�

�
Z 1

0

duffiffiffiffiffiffi
2	

p e�
1
2
ðu�x�Þ2

�
�
1� tanhð�ð�ðu� x�Þ; y; �ÞÞ

���
�

; ð38Þ

1

2

d

dt
r ¼ �r þ 1þ

1

�

� Z
Dy

�Z 1

0

duffiffiffiffiffiffi
2	

p e�
1
2
ðuþx�Þ2

�
�
1� tanhð�ðuþ x�; y; �ÞÞ

�
U�ðuþ x�Þ

�
Z 1

0

duffiffiffiffiffiffi
2	

p e�
1
2
ðu�x�Þ2

�
�
1� tanhð�ð�uþ x�; y; �ÞÞ

�
U�ð�uþ x�Þ

��
�

;

ð39Þ
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where

�ðx; y; �Þ � ��þ y

ffiffiffiffiffiffiffiffiffi
�

2
 �

s
� þ

�2ffiffiffiffiffi
2


p
�
x

and

x� � �
1ffiffiffiffiffi
2


p ð t�Am��Þ:

In the next subsection, we give the results for T ¼ 0 by
the numerical calculations of the S.P.E., and also the results
of the evolution equations together with the results by
numerical simultions.

4.2 Results
4.2.1 The equilibrium states

We solved the S.P.E. (25)–(27) numerically for several
values of parameters a and � and found the coexistence
region of correlated attractors, Hopfield attractors, and
mixed states. In Fig. 5, we show an example of the phase
diagrams. When � is decreased, at � ’ 0:0183, a pair of
correlated attractors appear. One of the correlated attractors
continues to exist at least until � ’ 0:0014. This attractor is
not shown in Fig. 5 because it is unstable, that is, this is not
an attractor but a repeller. Another correlated attractor,
which is drawn in the figure, is stable and exists until
� ’ 0:0049. At � ’ 0:0049, this correlated attractor disap-
pears and then a mixed state with three patterns appears and
continues to exist until � ¼ 0. Further, a mixed state with
thirteen patterns exist for � 2 ð0; 0:3119Þ. The Hopfield
attractor exists only for � 2 ð0; 0:013Þ. Thus, for � 2
ð0:0049; 0:013Þ, the Hopfield attractor, a correlated attractor,
and a mixed state with thirteen patterns coexist.

4.2.2 Dynamics
We studied the following two cases using deterministic

dynamics.
Case 1 A Hopfield attractor and a correlated attractor

coexist.
Case 2 A correlated attractor, but no Hopfield attractor.

In both cases, we performed numerical integrations of the
evolution equations (38) and (39) and numerical simulations
of eq. (1). In the numerical integration, we took mð0Þ ¼
ðm0; 0; . . . ; 0Þ and rð0Þ ¼ 1 as an initial condition. Since the
integration of the evolution equations required a lot of

computation time, we used the Euler method as the
integration scheme.

In the numerical simulations, an initial value of si was
determined according to the probability distribution (20). In
both numerical integrations and numerical simulations, m0

was taken as m0 ¼ 0:1; 0:2; . . . ; 0:9.
Case 1
As an example, we set a ¼ 0:35; � ¼ 0:01. In Fig. 6, we

show the result of DRT and of numerical simulations. As the
figure shows, the boundary between the basin of attraction
for the Hopfiled attractor and that for the correlated attractor
is around m1ð0Þ ¼ 0:5. Except for the boundary of the basin
of attraction, the results by two methods agree fairly well.

Case 2
As an example, we set a ¼ 0:35 and � ¼ 0:015. As is seen

from Fig. 7, the trajectories initially approach the state where
the Hopfield attractor existed but finally tend toward the
correlated attractor in both the numerical integrations and
numerical simulations except for m0 ¼ 0:9 in the numerical
integration. In the case of m0 ¼ 0:9 in the numerical
integration, our numerical scheme to solve the saddle point
equations did not generate a solution at some time. We
suggest that this is due to the precision of the numerical
calculations.
The tendency was that trajectories obtained by numerical
integrations tend toward the correlated attractor faster than
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Fig. 5. Equilibrium states for a ¼ 0:35 and T ¼ 0 for case of extensive

loading. The abscissa is � and the ordinate is m� (� ¼ 1; . . . ; 7). Solid

curve: Hopfield attractor. Dashed curves: correlated attractor. Long

dashed curves: mixed state of three patterns. Dotted curve: mixed state of

thirteen patterns.
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Fig. 6. Results of numerical integrations and numerical simulations for

extensive loading case. a ¼ 0:35, � ¼ 0:01, T ¼ 0 and c ¼ 13. Dashed

curves: simulation for N ¼ 60; 000. Solid curves: DRT. (a) Trajectory in

space of ðm1;m2Þ. C: correlated attractor. H: Hopfield attractor. (b) Time

evolution of m1.
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those obtained by numerical simulations.

5. Summary and Discussion

We studied the statics and dynamics of the model
introduced by Griniasty et al. in the finite and extensive
loading cases. In both cases, we qualitatively obtained
similar results. First, we summarize the results common to
both cases.

As for the statics, we solved the saddle point equations
numerically and obtained equilibrium states. We found
regions of parameters where the Hopfield attractor and a
correlated attractor coexist. It had been previouly believed
that correlated attractors exist only for a > 0:5. However, we
found that the correlated attractors exist not only for a > 0:5
but also for a < 0:5.

As for the dynamics, we studied the following two cases
by numerical integrations of the evolution equations and by
the numerical simulations, deriving the evolution equations
by dynamical replica theory in the extensive loading case.

First, we studied the transient behaviour when a Hopfield
attractor and a correlated attractor coexist. We found that
when we set initial conditions at mð0Þ ¼ ðm0; 0; . . . ; 0Þ (and
rð0Þ ¼ 1 for the extensive loading case), there exists some
critical initial overlap mc

0, which is the boundary between the
basin of attraction for the Hopfield attractor and that for the
correlated attractor. Next, we studied the transient behaviour

when a Hopfield attractor does not exist but a correlated
attractor does exist. Then, we found that trajectories initially
approach the state where the Hopfield attractor existed but
finally they tend toward the correlated attractor.

Next, we compare the results obtained in the finite loading
case and the results obtained in the extensive loading case.

5.1 Equilibrium state
In both cases, the Hopfield attractor, the mixed state, and

the correlated attractor exist, and there are parameter regions
where the Hopfield attractor, the mixed state, and the
correlated attractors coexist.

5.2 Dynamics
5.2.1 When several attractors coexist

In the finite loading case ða ¼ 0:4; T ¼ 0:04Þ, the boun-
dary between the basin of attraction for the Hopfiled
attractor and that for the correlated attractor is 0:15 < mc

1 <
0:16 in the numerical integrations and 0:16 < mc

1 < 0:17 in
the numerical simulations. On the other hand, in the
extensive loading case ða ¼ 0:35; � ¼ 0:01;T ¼ 0Þ, the
boundary between the basin of attraction for the Hopfiled
attractor and that for the correlated attractor is 0:4 < mc

1 <
0:5 in both the numerical integrations and the numerical
simulations. In the finite and extensive loading cases, the
results of numerical integrations and the numerical simu-
lations agree fairly well. One reason for the difference
between the finite and extensive loading cases might be due
to the difference in parameters.

5.2.2 When a Hopfield attractor does not exist but a
correlated attractor does exist

In the finite loading case, we used m1ð0Þ ¼ 0:1; 0:2; . . . ;
1:0 as the initial conditions. Then the trajectories finally
tended toward the correlated attractor in both the numerical
integrations and numerical simulations. On the other hand,
for the extensive loading case ða ¼ 0:35; � ¼ 0:015;T ¼ 0Þ,
we used m1ð0Þ ¼ 0:1; 0:2; . . . ; 0:9 and rð0Þ ¼ 1 as initial
conditions. Then, trajectories finally tended toward the
correlated attractor in both the numerical integrations and
numerical simulations, except for m1ð0Þ ¼ 0:9 in the
numerical integration for which it seems that the precision
of the numerical calculation is not good enough. Except for
the last case, the results of numerical integrations and
numerical simulations agree fairly well in both the finite and
extensive loading cases.

Therefore, we demonstrate that the results similar to those
in the finite loading case have been obtained in the extensive
loading case.

It might be considered that if we could construct a
physiological experiment to observe the transient behaviour
of a firing pattern of a monkey, we would be able to judge
whether an attractor neural network exists in the brain of the
monkey. As Miyashita and Chang reported, the neurons in
the AVT are highly selective towards a few of the 100
colored fractal patterns. This implies that the firing rate of
neurons in the AVT is very low, while the firing rate is set to
50% in the present model. Thus, in the future it will be
necessary to develop a model with a low firing rate,10) so that
we can compare results of that model with physiological
experimental results.
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Fig. 7. Results of numerical integrations and numerical simulations for

the extensive loading case. a ¼ 0:35, � ¼ 0:015, T ¼ 0 and c ¼ 13.

Dashed curves: simulation for N ¼ 60; 000. Solid curves: DRT. (a)

Trajectory in space of ðm1;m2Þ. C: correlated attractor. H: point where

Hopfield attractor existed. (b) Time evolution of m1.
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