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Abstract
We study coupled oscillator spin systems on sparse, random graphs. In particular, we examine the recent conjecture of

Ichinomiya on the equivalence of a sparsely connected oscillator network with ferromagnetic interactions to a fully connected
network with disordered (i.e. randomly quenched) interactions. By restricting our investigation to a Hamiltonian case we can
use the techniques of equilibrium statistical mechanics to compare these two models analytically including phase diagrams and
the calculation of order parameters in the ordered phase. We complete our investigation by performing some Monte Carlo
simulations to compare our theoretical predictions against.
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I. INTRODUCTION

In recent years, much attention has been paid to large, multi-particle interacting systems where the interaction
topology is described by a sparse random network [1–4]. By this we mean that each node or variable in the network
interacts with a random subset of other nodes which is much smaller than the system size, and generally finite even
in the infinite system size limit.

This current enthusiasm has been fueled by an abundance of systems (e.g. social networks [5], biological networks
[6, 7], neural networks [8], error-correcting codes [9] and optimisation problems [10, 11]) whose interactions are of
this sparse, random type. The Kuramoto model [12] of coupled phase oscillators has provided a wealth of interesting
models [13] describing synchronization phenomena. One important question has been how the topology of the network
influences synchronization [14] which has been investigated using both numerical and theoretical techniques [15–18].
A recent paper by T. Ichinomiya [19] shed some light on this issue. By using the path-integral formalism [20, 21] he
was able to develop a link between a sparse random network of coupled oscillators with uniform interactions and a
globally coupled (i.e. mean-field type all-to-all interactions between the oscillators) network with quenched random
interactions. This result can be seen heuristically by the method of moments which we describe briefly in Sec. II,
although Ichinomiya showed it via an expansion in the average connectivity. The expansion and link between the
two models was tested in [19] by the use of Monte Carlo techniques specifically looking at the Kuramoto transition.
Our main result is showing that by restricting ourselves to a Hamiltonian system of coupled oscillators we can solve
both the sparse random network (along the lines of [17, 18]) and the fully connected random interaction network
(along the lines of e.g. [22, 23] or see [24] for a more complete introduction to the replica theory). Since we have
an analytic solution to these models we are able to compare them at a higher degree of resolution than simulations
are able to provide, to see how well the fully connected (and hence simpler) system agrees with the sparse system
and to quantify the magnitude of any difference in e.g. the transition temperatures or the order parameters in the
ordered phase (where the oscillators are entrained into one overall cycle) [25]. In particular, we show that in the two
systems the transition temperature between entrained and disordered (Paramagnetic) phases agree asymptotically
as the connectivity parameter tends to infinity, whereas the behaviours are quite different for smaller values of the
connectivity parameter. A spin glass (disordered) low temperature phase exists only in the fully connected system.
In other words, Ichinomiya’s conjecture holds asymptotically but is not exact for oscillators with a finite number of
neighbours.

We define the two models in Sec. II and give a brief mean-field argument as to why they should behave similarly,
in Sec. III we use replica theory to solve the fully connected network of oscillators and in Sec. IV we use the cavity
approach to solve the sparse network of oscillators. We compare and contrast the two solutions in Sec. V showing
some results of our analysis and some simulation results.

II. MODEL DEFINITIONS

We study a system of N coupled phase oscillators as introduced by Kuramoto [12]. In this model, each oscillator
has a definite amplitude, and the state of a given oscillator is described by its phase φ ∈ IR. The evolution equation
for the phase φi of the i-th oscillator is given by

d

dt
φi = ωi +

∑
j 6=i

Jij sin(φj − φi) + ηi, (1)

where ηi(t) is Gaussian white noise process with variance 2T ,

〈ηi(t)ηj(t′)〉 = 2Tδijδ(t − t′). (2)

The solution of the model (1) in the thermodynamic limit (i.e. as N → ∞) will, of course, depend to a great extent
on the values taken by {ωi, Jij}, or on their statistics if they are taken to be random variables, and is generally a
highly non-trivial problem, although progress has been made in some cases, e.g. [26].

The archetypal sparse random network is the Erdös-Rényi random graph. For uniform ferromagnetic interactions
between the spins a graph of this type can be generated by specifying

Model ER P (Jij) =
c

N
δJij ,1 +

(
1 − c

N

)
δJij ,0 ∀i < j, (3)

where c is a finite constant and the interactions are taken to be symmetric. In the large system limit each oscillator
is connected to a random number of other oscillators, this number is a Poisson distributed random variable with
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parameter c. So, the average number of oscillators it is connected to is c and the variance of the number is also c. As
c increases, the Poisson(c) distribution is increasingly well approximated by a Gaussian distribution with mean c and
variance c (with the distribution being totally specified by its mean and variance). Thus, along the lines of a mean
field type argument we can write〈∑

j 6=i

Jij sin(φj − φi)

〉
≈

∑
j 6=i

〈Jij〉 〈sin(φj − φi)〉 (4)

=
c

N

∑
j 6=i

〈sin(φj − φi)〉 . (5)

Hence, the average field due to ferromagnetic connections with c other oscillators is replaced by a connection of
strength c/N with all the other oscillators. Similarly, the fluctuations given by a differing number of connections per
oscillator (according to the Poisson distribution) can be replaced by a disordered interaction with all other oscillators,

Model FC Jij =
c

N
+

√
c

N
zij ∀i < j, (6)

where zij ∼ N (0, 1). This satisfies
〈∑

j Jij

〉
= c and var(

∑
j Jij) = c. So the first two moments of the interactions for

the fully connected model (’FC’) agree with those for the Erdös-Rényi random graph model (’ER’). We have included
the above argument on the relationship between the two models for completeness, for a more detailed analysis using
perturbation theory applied within the path-integral formalism we refer the interested reader to [19].

Given the definition of the interactions (3) or even (6) the exact analysis of (1) is still a challenging problem. In
this paper, in order to reach an analytical result, in the following we restrict ourselves to the case where ωi = ω for
any i. Then, without loss of generality, we may assume ω = 0. Then eq. (1) can be rewritten as

d

dt
φi = − ∂

∂φi
H + ηi, (7)

H(φ) = −
∑
i<j

Jij cos(φi − φj). (8)

Thus, the specification of a homogeneous driving force ω allow the model to be written as a Hamiltonian system. In
the following two sections we use the techniques of equilibrium statistical mechanics and find analytic solutions to the
equilibrium behaviour of these two models so that they can be compared in Sec. V.

III. THE FULLY CONNECTED COUPLED OSCILLATOR NETWORK

Models of the form (7,8) subject to the definition (6) have been studied for some time [22, 24] using the replica
approach so we will only outline the method of solution. The replica approach allows one to calculate the disorder
averaged free energy per spin f = − limN→∞(βN)−1log Z for model FC. It is given by:

f = − lim
N→∞

lim
n→0

(βNn)−1 log
∫

dφ1 . . . dφne−β
P

α H(φα
) (9)

where φα = (φα
1 , . . . , φα

N ), α = 1, . . . , n and H is defined in (8) with the interactions {Jij} specified by (6). The
averages over the quenched disorder variables {Jij} now amount to performing Gaussian averages. These can be
performed with the resultant free-energy being expressed as a saddle-point integral, thus it is given as an extremum:

f = − lim
N→∞

lim
n→0

(βn)−1extr[Φ + Ψ] (10)

Φ = i
∑
α

[m̂α
c mα

c + m̂α
s mα

s ] + i
∑
α≤β

[q̂αβ
cc qαβ

cc + q̂αβ
ss qαβ

ss + q̂αβ
cs qαβ

cs ] (11)

+
cβ

2

∑
α

[(mα
c )2 + (mα

s )2] +
dβ2

4

∑
αβ

[(qαβ
cc )2 + (qαβ

ss )2 + (qαβ
sc )2 + (qαβ

cs )2]

Ψ = log
∫

dφ e−i
P

α[m̂α
c cos(φα)+m̂α

s sin(φα)]−i
P

α≤β [q̂αβ
cc cos(φα) cos(φβ)+q̂αβ

ss sin(φα) sin(φβ)+q̂αβ
cs cos(φα) sin(φβ)]. (12)
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Assuming that the above saddle point is replica symmetric, rotating variables in the complex plane and eliminating
superfluous order parameters, the disorder averaged free energy per spin can be written in the more compact form:

f = −cβ

4
[q2

cc + q2
ss + 2q2

sc − 1] − c

2
(m2

c + m2
s) −

cβ

2
[Qcc(Qcc − 1) + Q2

sc] +
1
β

∫
DxDy log

∫
dψM(ψ|x, y) (13)

with the effective measure

M(ψ|x, y) = ecβmc cos(ψ)+cβms sin(ψ)+ 1
2 cβ2(Qcc−qcc) cos2(ψ)+ 1

2 cβ2(1−Qcc−qss) sin2(ψ)

×e
cβ2(Qsc−qsc) sin(ψ) cos(ψ)+βx

r

c
qccqss−q2

sc
qss

cos(ψ)+βy
√

c( qsc√
qss

cos(ψ)+
√

qss sin(ψ))
. (14)

The order parameters themselves have to be solved from the self-consistent equations:

mc = [〈cos(ψ)〉] ms = [〈sin(ψ)〉] Qcc = [
〈
cos2(ψ)

〉
] Qsc = [〈cos(ψ) sin(ψ) 〉] (15)

qcc = [〈cos(ψ)〉2] qss = [〈sin(ψ)〉2] qsc = [〈sin(ψ)〉 〈cos(ψ)〉]

where the averages in the above equations are given by

[. . .] =
∫

DxDy . . . (16)

〈. . .〉 =
∫

dψM(ψ|x, y) . . .∫
dψM(ψ|x, y)

(17)

One of the interesting characteristics of the model is the phase diagram, which can be explored by locating the
critical temperature using a bifurcation analysis. In the high temperature phase β → 0 we have mc = ms = 0 and
qcc = qss = qsc = Qsc = 0 while Qcc = 1

2 . The orthogonality of our order parameters (when integrated over [0, 2π]) is
useful as the bifurcation matrix is diagonal and thus the correct result is obtained by considering each order parameter
term by term. The magnetisation terms are straightforward as we find by expanding for small mc,ms that

mc = [〈cos(ψ)〉] =
∫

dψ

2π
cos(ψ)[cβmc cos(ψ)] =

cβ

2
mc (18)

and as the calculation for ms is identical the critical temperature Tmc = Tms = c/2. Now, TQcs follows similarly via

Qcs = [〈cos(ψ) sin(ψ)〉] =
∫

dψ

2π
cos(ψ) sin(ψ)[cβ2Qcs sin(ψ) cos(ψ)] =

cβ2

8
Qcs (19)

which gives TQcs =
√

c/8. Further, qcc can also be found along similar lines

qcc = [〈cos(ψ)〉2] =
∫

DxDy

{∫
dψ

2π
cos(ψ)[1 + βx

√
dqcc cos(ψ) + y

√
cqss sin(ψ) + . . .]

}2

=
β2cqcc

4
(20)

and (as qss and qcs follow similarly) gives Tqcc
= Tqss

=
√

c/2.
Our analysis leads to the conclusion that the critical temperatures for P → F and P → SG transitions are

P → F : T =
c

2
(21)

P → SG : T =
√

c

2
(22)

note that the latter agrees with [22] (once we identify J̃2 from their paper with c). For all c > 1 we enter a ferromagnetic
phase at low temperatures (this is consistent with the percolation transition for model ER - below c = 1 there can
be no macroscopically ordered phase). However, for c < 1 we have a spin-glass low temperature phase in model FC
(i.e. for T < 0.5) which cannot correspond at all to any state in a uniform bond dilute network of coupled oscillators.
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IV. THE COUPLED OSCILLATOR NETWORK ON A RANDOM GRAPH

Models of the form (7,8) subject to the definition (3) have only been solved analytically relatively recently [17, 18]
(to which the reader can refer for more detailed solutions of the present model) due to the increased complexity of
the analysis when each node of the network is only connected to a finite number of neighbours. This complexity
manifests itself via the order parameters: rather than having a few parameters that can fully characterise the system
as in section III, the self-consistent order parameter equations are written in terms of a disorder averaged measure
over probability distributions of individual oscillators,

W [{P}] = lim
N→∞

〈
1
N

∑
i

Pi(φi)

〉
. (23)

Thus, rather than having to solve for several parameters we have to solve for a measure over distributions, an altogether
more complicated object. To see how this arises, we again invoke the replica method to calculate the disorder averaged
free-energy as:

f = lim
n→0

1
βn

{
1
2c

∫
dφdψP (φ)P (ψ)

[
eβ

P

α cos(φα−ψα) − 1
]
− log

∫
dφP (φ)ec

R

ψP (ψ)[eβ
P

α cos(φα−ψα)−1]

}
(24)

where φ and ψ are both n-replicated vectors and the measure P is to be found from the self-consistent equation:

P (φ) =
1
N

ec
R

dψP (ψ)eβ
P

α cos(φα−ψα)
, (25)

where N is just a normalisation constant. The free-energy in the above form is somewhat intractable and to make
progress we require the usual replica-symmetric ansatz, which for the present model takes the form [18],

P (φ) =
∫

{dP}W [{P}]
∏
α

P (φα) (26)

which if we compare to the definition (23), we see that we can interpret the replica-symmetric ansatz as saying that the
marginal equilibrium distribution for a given oscillator is the same in all replicas of the system (which is quite intuitive
- since replica symmetry is normally closely linked to ergodicity and hence independence of initial system conditions
[24]). Algebraically, the ansatz (26) allows one to take the limit n → 0 giving the replica-symmetric disorder averaged
free-energy f as

f =
c

2β

∫
dP1dP2W [P1]W [P2] log

∫
dφ1dφ2P1(φ1)P2(φ2)eβ cos(φ1−φ2)

−β−1
∑
k≥0

e−cck

k!

∫ [
k∏

`=1

dP`W [P`]

]
log

∫
dφ

k∏
`=1

dφ`P (φ`)eβ
P

` cos(φ−φ`) (27)

where the measure W [·] is found from the self-consistent equation

W [P ] =
∑
k≥0

e−cck

k!

∫ ∏
1≤`≤k

dP`W [P`]δF

[
P (φ) − 1

N
∏

`

∫
dφ`P`(φ`)eβ cos(φ−φ`)

]
. (28)

where δF [·] is a delta-functional, returning zero when integrated over unless the argument is zero for the whole range
of φ (except perhaps on sets of measure zero). Apart from in certain special cases (e.g. in the paramagnetic phase) is
not clear how to treat the equation above analytically. However, a population dynamics approach can be used, with
each member of the population somehow encoding a given distribution P , and the population as whole converging
towards W as both the size and the number of iterations of the dynamics increase.

The phase transitions of model ER can be found by first noting that W [P ] = δF

{
P (φ) − 1

2π

}
is a solution of

(28) corresponding to the high-temperature, paramagnetic state where the oscillators have no overall, nor individual
alignment. Continuous transitions away from this state can be found using the so-called ’Guzai expansion’ [18] which
is in essence perturbation expansion around the paramagnetic solution in ’small’ functions ∆(φ) (i.e. one assumes
that the magnitude of range of ∆ is small) - P (φ) = 1

2π + ∆(φ). Insertion of this ansatz into (28) and ignoring terms
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FIG. 1: Phase diagram in T − c plane. Solid curve: sparse model (Model ER), dotted curve: fully connected model ( Model
FC). Right panel: Enlargement of the left panel.

of second order or higher in ∆ leads to the conclusion that an ordering transition in the oscillators away from the
paramagnetic state occurs at

1 =
cI1(β)
I0(β)

(29)

where In(β) is the nth modified Bessel function, In(β) =
∫ 2π

0
dφ
2π cos(nφ)ez cos(φ). Note that there is no spin-glass

transition in this model, which is unsurprising since there is no quenched bond-disorder in the model (although there
is quenched dilution-disorder - the bonds are all positive, leading to forces tending to encourage synchronization,
although any particular graph realisation, out of the possible ensemble or random, dilute graphs, is random).

V. COMPARISON OF THE TWO MODELS

One could ask a variety of questions about how similar the two models we have considered are. We restrict ourselves
to two main comparisons: what is the difference in the phase diagrams of model ER and model FC; and, how does
the degree of synchonization compare between these two models in the ordered phase.

In figure 1 we see the phase diagram of both models. Comparison of equation (21) with equation (29) shows that
the transitions are not coincident, although an expansion for large c shows that they are in leading order. Indeed,
even for values of c of order 1, the discrepancy between the transition temperatures is not very large, and would not
necessarily be obvious from simulations except for quite large system sizes. Thus, not only we see the agreement
predicted by [19] but we can also measure quantitatively the degree of disagreement between the two models.

In figure 2 we show the value of a synchonization order parameter m =
√

m2
c + m2

s where mc and ms are defined
in equation (15) as we vary the temperature, for two different values of the connectivity. Again, as one would expect,
the agreement between the models improves for larger values of c, and, as one may also expect, the disagreement
is worst near the transition temperature where fluctuations and correlations will be largest. In figure 2, we display
results by numerical simulations, too. The agreement between theoretical and numerical results is fairly well.

VI. CONCLUSION

In this paper we have investigated the similarity and differences of two different models for coupled oscillators with
long-range coupling. The relationship between these models was pointed out by Ichinomiya [19] using path-integral
analysis [21]. Ichinomiya having found this connection analysed it using simulation techniques. This identity between
the models is important due to the prevalence of random graph type network models in a variety of disciplines and
the importance of the Kuramoto model in describing synchronization phenomena. We have sought to further the
understanding of the relationship between these models, and the size and nature of disagreements between them by
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looking at a particular case where both models can be solved analytically, namely when they are both in equilibrium.
This has allowed us to compare their phase diagrams and the value of synchronization order parameters in the ordered
phase. This clarifies the parameter region where the two models behave differently. In particular, when c is less than
1, a spin glass low temperature phase appears for the fully connected system. In contrast, the sparsely connected
system does not percolate for c less than one and so the equilibrium state is the Paramagnetic phase for the sparsely
connected system.
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