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We investigate the supervised batch learning of Boolean functions expressed by a two-

layer perceptron with a tree-like structure. We adopt continuous weights (spherical

model) and the Gibbs algorithm. We study the Parity and And machines and two

types of noise, input and output noise, together with the noiseless case. We assume

that only the teacher suffers from noise. By using the replica method, we derive the

saddle point equations for order parameters under the replica symmetric RS ansatz. We

study the critical value αC of the loading rate α below which only the para phase exists

for cases with and without noise. We find that αC is nonzero for the Parity machine,

while it is zero for the And machine. We derive the exponent β̄ of order parameters

expressed as (α−αC)
β̄ when α is near to αC. Furthermore, in the Parity machine, when

noise exists, we find a spin glass solution, in which the overlap between the teacher

and student vectors is zero but that between student vectors is nonzero. We perform

Markov chain Monte Carlo simulations by simulated annealing and also by exchange

Monte Carlo simulations in both machines. In the Parity machine, we study the de

Almeida-Thouless stability, and by comparing theoretical and numerical results, we

find that there exist parameter regions where the RS solution is unstable, and that

the spin glass solution is metastable or unstable. We also study asymptotic learning

behavior for large α and derive the exponents β̂ of order parameters expressed as α−β̂

when α is large in both machines. By simulated annealing simulations, we confirm these

results and conclude that learning takes place for the input noise case with any noise

amplitude and for the output noise case when the probability that the teacher’s output

is reversed is less than one-half.
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1. Introduction

Previously, we studied the supervised learning of a simple perceptron with continu-

ous weights (spherical model) and with discrete weights (Ising perceptron) by using the

Gibbs algorithm under the existence of external noise.1–6 In particular, we studied the

learning curve for noiseless, output noise, and input noise cases, and found that learning

behaviors depend on the type of noise. That is, for the spherical model, we found that

there exists an optimal temperature at which the generalization error is a minimum only

for the output noise model.3,4 On the other hand, for the Ising perceptron, in which the

synaptic weights are discrete and take values of ±1, there exists perfect learning, such

that a student vector completely coincides with a teacher vector at a finite number of

examples, only for the output noise model.5,6

When the number of layers increases, what kinds of phenomena take place is an

interesting theme to be studied. In addition, it is very important to study two-layer

perceptrons. One of the reasons is that if the number of neurons in the hidden units

is sufficiently large, they can solve any classification problem such as the exclusive

OR (XOR) problem, which cannot be solved by a simple perceptron as is well known.

Another reason is technological: multilayer perceptrons are applied to many practical

problems such as pattern recognition,7 combinatorial optimization,8 and so forth. There

have been many studies on the learning of multilayer networks.9–15 Among other types of

learning, we focus on learning of Boolean functions expressed by a two-layer perceptron

with a tree-like architecture. This model has been studied by using the Gibbs and Bayes

algorithms with and without noise by Schottky etal..16,17 By defining α as p/N , where

p and N are the numbers of examples and input synapses, respectively, it has been

reported that the critical value αC above which learning takes place is nonzero for the

Parity machine but is 0 for the And machine. In ref. 15, the authors call the phenomenon

of the nonzero αC the “Aha effect”, which is obtained with and without noise. On the

other hand, αC is always 0 for learning in simple perceptrons.1–6 The phenomenon of

the nonzero αC has also been reported for the online learning of the Parity machine in

the two-layer perceptron for output noise by Kabashima.18 Furthermore, it has been

reported that learning itself does not take place when the noise amplitude is large.18

In this paper, we assume that only the teacher suffers from noise for simplicity. We

use the replica method and perform Markov chain Monte Carlo simulations (MCMCs)

together with exchange Monte Carlo simulations (EXMCs). We assume the replica

∗E-mail address: uezu@cc.nara-wu.ac.jp
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symmetric (RS) ansatz. We study the Parity machine and the AND machine. In the

Parity machine, firstly, we focus on whether αC is 0 or not and the behaviors of the

learning curve when learning begins. Secondly, we study asymptotic learning behavior

for large α. Thirdly, we study the de Almeida-Thouless (AT) stabilities19 of the RS

solutions in the cases that the temperature is low and the noise amplitude is large.

In both cases, the spin glass solution exists theoretically, but numerically it does not

appear. In the AND machine, we study learning behaviors for α ≃ 0 and for large α,

theoretically and numerically.

The structure of this paper is as follows. In sect. 2, we formulate the problem by

the replica method and describe the free energy for general Boolean functions and

for input and output noise together with the noiseless case. In sect. 3, we study the

Parity machine. We derive the saddle point equations (SPEs) and expressions for the

generalization error, and investigate the critical αC and the behaviors of the learning

curve for α around αC, and we study asymptotic learning behavior for large α. In sect.

4, we study the AT stability. In sect. 5, we show the results of numerical simulations

and compare them with the theoretical results for the Parity machine. For the And

machine, theoretical analysis is given in sect. 6, and numerical and theoretical results

are compared in sect. 7. Section 8 contains a summary and discussion. In Appendix A,

we describe the details of the derivation of the free energy of general Boolean functions

for input and output noise together with the noiseless case. In Appendices B and C, we

derive SPEs for the Parity and And machines, respectively.

2. Formulation

We study a two-layer perceptron with a tree-like structure. Input layers consist of

K units, and each unit has M input points (see Fig. 1). We assume that both the

teacher and student have the same architecture but only the teacher suffers from noise.

We denote the teacher vector by wt = (wt
1,w

t
2, · · · ,wt

K) and the student vector by

ws = (ws
1,w

s
2, · · · ,ws

K). Common examples are given to both the teacher and student.

The µth example is denoted by xµ = (xµ
1 ,x

µ
2 , · · · ,x

µ
K). Vectors w

t
l ,w

s
l , and xµ

l are all

M -dimensional and their norms are set to
√
M .

wt
l = (wt

l1, w
t
l2, . . . , w

t
lM), |wt

l | =
√
M, l = 1, 2, . . . , K, (1)

ws
l = (ws

l1, w
s
l2, . . . , w

s
lM), |ws

l | =
√
M, l = 1, 2, . . . , K, (2)

xµ
l = (xµ

l1, x
µ
l2, . . . , x

µ
lM), |xµ

l | =
√
M, l = 1, 2, . . . , K. (3)
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Fig. 1. Schematic figure of tree-like structure of two-layer perceptron.

The outputs to an example vector xµ = {xµ
l } by the teacher and student are

σt
l,µ = sgn

((xµ
l ,w

t
l)√

M

)
, (4)

σt
µ = Bt(σ

t
1,µ, . . . , σ

t
K,µ), (5)

σs
l,µ = sgn

((xµ
l ,w

s
l )√

M

)
, (6)

σs
µ = Bs(σ

s
1,µ, . . . , σ

s
K,µ). (7)

Here, (x,w) denotes the inner product and Bt(σ1 . . . , σK) and Bs(σ1, . . . , σK) are

Boolean functions, that is, mappings from σ = (σ1, · · · , σK) to σ, where σi = ±1

and σ = ±1. sgn(x) is defined as

sgn(x) =

1 for x > 0,

−1 for x ≤ 0.

2.1 Learning algorithm

Let us define the training set ξp by the p-set of (xµ, σt
µ),

ξp = {(xµ, σt
µ), µ = 1, · · · , p}. (8)

When the training set ξp is given, we define the energy of a student w as the number of

discrepancies between the output σt
µ by the teacher and the output σs

µ by the student,

E[w, ξp] =

p∑
µ=1

Θ(−σt
µσ

s
µ), (9)
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where Θ(u) is the Heaviside function, i.e., Θ(u) = 1
2
(sgn(u) + 1). The learning strategy

we adopt is the Gibbs algorithm, in which a synaptic weight w is selected with a

probability proportional to e−βE[w,ξp], where β is the inverse temperature, β = 1
T
.

The algorithm in the limit T → +0 corresponds to the minimum-error algorithm, in

which only the synaptic weights with minimum energies are selected. Therefore, the

temperature represents the measure of tolerance in selecting synaptic weights. Let us

define the overlap {Rl} between the weights of a student and the teacher, and the

overlap {ql} between the weights of students as

Rl =
1

M

(
wt

l ,w
s
l

)
, l = 1, · · · , K, (10)

ql =
1

M

(
ws

l ,w
s
l

)
, l = 1, · · · , K. (11)

When Rl = 1, the teacher and student vectors in the lth unit coincide, and if it is 0,

they are orthogonal. We define the loading rate α as

α =
p

KM
. (12)

The generalization error ϵg is defined as the probability that the outputs by the teacher

and student to a new example are different. That is,

ϵg = ⟨Θ(−σsσt)⟩p,x, (13)

where ⟨·⟩p,x implies the average over the teacher’s output and examples. We study

the learning curve ϵg(α) and the α dependences of overlaps R and q, and study the

temperature dependences of these quantities.

2.2 Replica analysis

We derive the SPEs by the replica method. The partition function Z is expressed

as

Z =

∫ [ K∏
l=1

dws
l

][ K∏
l=1

δ((ws
l )

2 −M)
]
e−βE[ws,ξp]. (14)

Here, dws
l = dws

l1 . . . dw
s
lM . We denote the probability that the teacher output is σ by

P (σ). We assume the self-averaging of the logarithm of the partition function, that is,

lnZ is equal to the value averaged over teacher’s output, examples, and teacher’s weight

vectors.

lnZ = ⟨lnZ⟩p,x,wt .
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In order to calculate lnZ, we use the replica method. We prepare n sets of students

{ws,α
l }α=1,n with the same set of the training set ξp and the same teacher vector wt.

Thus, from Eq. (14), we have

Zn =

∫ [∏
α

K∏
l=1

dws,α
l

][∏
α

K∏
l=1

δ((ws,α
l )2 −M)

]
e−

∑
α βE[wsα,ξp]. (15)

We define

Rα
l =

1

M
(wsα

l ,wt
l), l = 1, · · · , K, (16)

qαβl =
1

M
(wsα

l ,wsβ
l ), l = 1, · · · , K. (17)

By using the standard recipe, under the ansatz of the replica symmetry, i.e., Rl = Rα
l

and ql = qαβl (l = 1, · · · , K), ⟨lnZ⟩p,x,wt is expressed as

1

N
⟨lnZ⟩p,x,wt =

1

n
αG1 +

1

n
G2. (18)

Therefore, the free energy per input unit F/N is given by

F/N = −T ⟨lnZ⟩p,x,wt/N = −T
1

n
(αG1 +

1

n
G2). (19)

Irrespective of the type of Boolean function and noise, G2

n
is expressed as

G2

n
=

1

K

K∑
l=1

1

2

(
ln

2π

El + Fl

+ El +
Fl − R̄2

l

El + Fl

)
+

1

K
(i
∑
l

R̄lRl +
∑
l

Flql
2

), (20)

where El is introduced to express the normalization of students’ vectors, and Fl and R̄l

are conjugate variables to ql and Rl, respectively. See Appendix A for the derivation.

By eliminating conjugate variables using their saddle point conditions, the expression

for G2 is further rewritten as

G2

n
=

1

2K

K∑
l=1

[
ln

(
2π(1− ql)

)
+ 1 +

ql −R2
l

1− ql

]
. (21)

Below, for the input and output noise and noiseless cases, we give expressions for G1

for general Boolean functions. The detail of the derivation of these expressions is also

given in Appendix A.

2.2.1 Input noise

We assume that an independent noise ζl enters each example xl input to the teacher

and that (ζl)i is Gaussian noise with mean 0 and standard deviation τl. The probability

p(σ|{ht
l}) that the teacher’s output is σ is the probability that σ = B({σl}). Here,
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ht
l =

1√
M
(wt

l ,xl). This probability is expressed as

p(σ|{ht
l}) = Tr{σl} △

σ
t ({σl})

K∏
l=1

H

(
− σl

ht
l

τl

)
, (22)

where we define

H(x) =

∫ ∞

x

dt√
2π

e−
t2

2 =

∫ ∞

x

Dt, (23)

Dt ≡ dt h(t), h(t) ≡ 1√
2π

e−
t2

2 , (24)

△σ
t ({σl}) =

1 for σ = Bt

(
{σl}

)
,

0 for σ = −Bt

(
{σl}

)
.

(25)

G1

n
is expressed as

G1

n
=

[ ∫ ∏
l

Dtl

] ∑
σ=±1

Trσl
△σ

t ({σl})
[∏

l

H
(
σlX̃l

)]
lnΦσ

β,s({Yl}), (26)

where

Φσ
β,s({Yl}) = Tr{σ′

l}

(
△̃σ

s,β({σ′
l})
∏
l

H(σ′
lYl)

)
, (27)

X̃l = ζ̃ltl, Yl = γltl, γl =

√
ql

1− ql
, ζ̃l =

Rl√
ηlql −R2

l

, ηl = 1 + τ 2l , (28)

△σ
s ({σl}) =

1 for σ = Bs

(
{σl}

)
,

0 for σ = −Bs

(
{σl}

)
,

(29)

△̃σ

s,β({σα
l }) ≡ e−β + (1− e−β)△σ

s

(
{σα

l }
)
. (30)

Note that Φσ
β,s({Yl}) is common for the noiseless and input and output noise cases but

differs according to the Boolean function Bs

(
{σl}

)
, that is, it differs for the Parity and

And machines.

2.2.2 Output noise

In the output noise case, the sign of the output σ is reversed with a nonzero probabil-

ity. We assume that only the teacher suffers from output noise. Let λ be the probability

that the teacher’s output is reversed. Then, the probability that teacher’s output is σ

is

p(σ|{ht
l}) = λ+ (1− 2λ)Tr{σl} △

σ
t ({σl})

∏
l

Θ(σlh
t
l). (31)
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G1

n
is expressed as

G1

n
=

[ ∫ ∏
l

Dtl

] ∑
σ=±1

{λ+ (1− 2λ)Tr{σl} △
σ
t ({σl})

∏
l

H
(
σlX̃l

)
} lnΦσ

β,s({Yl}),

(32)

Xl = ζltl, Yl = γltl, γl =

√
ql

1− ql
, ζl =

Rl√
ql −R2

l

. (33)

Φσ
β,s({Yl}) is given by Eq. (27). Note that the expression for ζl is different from that for

the input noise case.

2.3 Noiseless case

Quantities for the noiseless case are obtained by substituting τl = 0 in the input

noise model or by substituting λ = 0 in the output noise model. Thus,
G1

n
is

G1

n
=

∑
σ=±1

{Tr{σl} △
σ
t ({σl})

∏
l

∫
DtlH(σlXl)} lnΦσ

β,s({Yl}), (34)

Xl = ζltl, Yl = γltl, γl =

√
ql

1− ql
, ζl =

Rl√
ql −R2

l

. (35)

In this paper, we study the case that Bs = Bt = B; thus, ∆σ
s = ∆σ

t .

In the next section, we study the Parity machine.

3. Parity Machine

Hereafter, we consider the case of two units, that is K = 2. The output of the Parity

machine is 1 if the outputs of the two units are the same and -1 otherwise, that is,

B(σ1, σ2) = σ1σ2. (36)

Below, we show the SPEs. Detailed derivations are given in Appendix B.

3.1 Input noise

We study the case of τl = τ . As shown later, our numerical results obtained by

MCMCs show the relations ql = q and l = R for l = 1, 2. Thus, we assume these

relations. We obtain

G1

n
= 2

∫
Dt1Dt2H2(X̃1, X̃2) lnΦ+(Y1, Y2), (37)

where H2(X̃1, X̃2) = H(X̃1)H(X̃2) + H(−X̃1)H(−X̃2) and Φ+(Y1, Y2) ≡ Φ+1
β,s({Yl}) =

H2(Y1, Y2) + e−βH2(Y1,−Y2). Then, the SPEs are given by

q2 −R2 = 2α(1− e−β)
√
q(1− q) I

(i)
1 , (38)
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R(ηq −R2)3/2 = −2αηq(1− q) I
(i)
2 , (39)

X̃l = ζ̃tl, Yl = γtl, γ =

√
q

1− q
, ζ̃ =

R√
ηq −R2

, η = 1 + τ 2, (40)

I
(i)
1 = 2I1,1 = 2

∫
Dt1Dt2t1h(Y1)Ha(Y2)

H2(X̃1, X̃2)

Φ+(Y1, Y2)
, (41)

I
(i)
2 = 2I2,1 = 2

∫
Dt1Dt2t1h(X̃1)Ha(X̃2) lnΦ+(Y1, Y2), (42)

where Ha(X̃2) = H(X̃2)−H(−X̃2).

3.2 Output noise

G1

n
is

G1

n
= 2

∫
Dt1Dt2

{
λ+ (1− 2λ)H2(X1, X2)

}
lnΦ+(Y1, Y2). (43)

The SPEs are

q2 −R2 = 2α(1− e−β)
√

q(1− q) I
(o)
1 , (44)

R(q −R2)3/2 = −2αq(1− q) I
(o)
2 , (45)

I
(o)
1 = 2

∫
Dt1

∫
Dt2{λ+ (1− 2λ)H2(X1, X2)}t1

h(Y1)Ha(Y2)

Φ+(Y1, Y2)
, (46)

I
(o)
2 = 2(1− 2λ)

∫
Dt1

∫
Dt2h(X1)Ha(X2)t1 lnΦ+(Y1, Y2), (47)

Xl = ζtl, ζ =
R√

q −R2
, Yl = γtl, γ =

√
q

1− q
. (48)

3.3 Noiseless case

In this case, the SPEs are given by substituting τ = 0 in the expressions for the

input noise model or substituting λ = 0 in the expressions for the output noise model.

q2 −R2 = 2α(1− e−β)
√
q(1− q) I

(n)
1 , (49)

R(q −R2)3/2 = −2αq(1− q) I
(n)
2 , (50)

I
(n)
1 = 2

∫
Dt1

∫
Dt2H2(X1, X2)t1

h(Y1)Ha(Y2)

Φ+(Y1, Y2)
, (51)

I
(n)
2 = 2

∫
Dt1

∫
Dt2h(X1)Ha(X2)t1 lnΦ+(Y1, Y2), (52)

Xl = ζtl, ζ =
R√

q −R2
, Yl = γtl γ =

√
q

1− q
. (53)
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3.4 Generalization error

Here, we give the expressions for the generalization error for the Parity machine.

(1) Noiseless case

ϵg =
1

2
− 2

π2
sin−1 R1 sin

−1 R2. (54)

(2) Input noise

ϵg =
1

2
− 2

π2
sin−1(

R1√
1 + τ 2

) sin−1(
R2√
1 + τ 2

). (55)

(3) Output noise

ϵg =
1

2
− (1− 2λ)

2

π2
sin−1R1 sin

−1R2. (56)

3.5 Behavior for small α and critical value αC

In the Parity machine, there exists nonzero critical values of α, αC and αL, above

which learning takes place when T is fixed. In order to obtain the formulae for αC and

αL, assuming q ∼ 0 and R ∼ 0, we expand I1 and I2 in terms of q and R. In the course

of the study, we note that there are two cases of ζ and ζ̃. In the case of ζ ∼ O(1) or

ζ̃ ∼ O(1), which occurs in the learning state, αC is defined. On the other hand, in the

case of ζ = 0 and ζ̃ = 0, which occurs in the spin glass state, αL is defined. Firstly, we

study the former case.

3.5.1 Learning state

(i) Noiseless case

Let us calculate the expansions of I
(n)
1 [Eq. (51)] and I

(n)
2 [Eq. (52)] with respect to γ.

Using the expansions

Φ+(Y1, Y2) =
1

2
(1 + e−β)

[
1 +

2a

π
γ2t1t2

(
1− γ2

6
(t21 + t22) +O(γ4)

)]
, (57)

Ha(Y2) ≃ − 2√
2π

γt2 +
1

3
√
2π

γ3t32 +O(γ5), (58)

we have

I
(n)
1 = − 4γ

π2(1 + e−β)

(
ζ√

1 + ζ2

(
1− γ2

6

3 + 2ζ2

1 + ζ2

)
ζ

1 + γ2

1√
1 + γ2 + ζ2

− aγ2(1 + γ2)−3/2 +O(γ4)

)
,

(59)

I
(n)
2 = −4aγ2

π2

ζ

(1 + ζ2)2

(
1− l2(ζ

2)γ2 +O(γ4)

)
, (60)

l2(ζ
2) =

3 + ζ2

3(1 + ζ2)
, (61)
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where

a =
eβ − 1

eβ + 1
. (62)

When ζ is not a small quantity, we obtain

I
(n)
1 = − 4γ

π2(1 + e−β)

ζ2

1 + ζ2

(
1− l1(ζ

2)γ2 +O(γ4)

)
, (63)

l1(ζ
2) =

2(3 + 2ζ2)

3(1 + ζ2)
+ (1 +

1

ζ2
)a. (64)

We have the relations

q2 −R2

γ
√

q(1− q)
=

γ2 − ζ2

(1 + γ2)(1 + ζ2)
, (65)

R(q −R2)3/2

q(1− q)γ2
=

ζ

(1 + ζ2)2
. (66)

Substituting these relations into the SPEs (49) and (50) yields

x− y

(1 + x)(1 + y)
=

8a

π2
α

x

1 + x

(
1− l1(x)y

)
+O(y2), (67)

1 =
8a

π2
α

(
1− l2(x)y

)
+O(y2), (68)

where we define x ≡ ζ2 and y ≡ γ2. R and q are

R =

√
xy

(1 + x)(1 + y)
, (69)

q =
y

1 + y
. (70)

From Eq. (68), the solution y exists for α > α
(n)
C . We obtain

α
(n)
C =

π2

8a
. (71)

Defining ε =
α−α

(n)
C

α
(n)
C

, the SPEs (67) and (68) are rewritten as

x− y

(1 + x)(1 + y)
= (1 + ε)

x

1 + x

(
1− l1(x)y

)
+O(y2), (72)

1 = (1 + ε)

(
1− l2(x)y

)
+O(y2). (73)

We expand x and y by ε.

x = x0 + x1ε+ · · · , (74)

y = y0 + y1ε+ · · · . (75)
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From Eq. (73), we obtain

y =
ε

(1 + ε)l2(x)
+O(y2). (76)

Thus,

y0 = 0, y1 =
1

l2(x0)
. (77)

From Eq. (72), we obtain

y1 =
x0

x0l1(x0)− (1 + x0)
. (78)

From this, we obtain

(x0 + 1)(ax0 − (1− a)) = 0. (79)

Since x = ζ2 ≥ 0, we have

x0 =
1− a

a
=

2

eβ − 1
. (80)

Thus, we obtain

R ≃

√
6(eβ − 1)

(3eβ − 1)(eβ + 1)

√
∆α

α
(n)
C

, (81)

q ≃ 3(eβ + 1)

3eβ − 1

∆α

α
(n)
C

, (82)

ϵg ≃ 1

2
− 2

π2
R2 ≃ 1

2
− 12

π2

eβ − 1

(3eβ − 1)(eβ + 1)

∆α

α
(n)
C

, (83)

where ∆α = α − α
(n)
C . Since R is positive, we call this a learning (L) solution. The

exponents β̄ of R and ϵg are defined by R ∝ (∆α)β̄R , q ∝ (∆α)β̄q , and ∆ϵ ≡ ϵg|R=0−ϵg ∝
(∆α)β̄ϵ , respectively. Thus, we obtain β̄R = 1/2, β̄q = 1, and β̄ϵ = 1.

(ii) Input noise

Expressions I
(i)
1 and I

(i)
2 are obtained from I

(n)
1 and I

(n)
2 by replacing ζ with ζ̃. We have

the relations

− q2 −R2

γ
√
q(1− q)

=
ηx̃+ (η − 1)x̃y − y

(1 + x̃)(1 + y)
, (84)

R(ηq −R2)3/2

q(1− q)γ2
=

η2
√
x̃

(1 + x̃)2
, (85)

where x̃ = ζ̃2 and y = γ2. By similar analysis to the noiseless case, we obtain

α
(in)
C = η

π2

8a
, (86)

y0 = 0, (87)
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y1 =
ηx̃0

ηx̃0l1(x̃0)− (1 + x̃0)
, (88)

x̃0 =
1− ηa

η(1 + a)− 1
. (89)

The condition that x̃0 is non-negative is

β < ln

(
2 + τ 2

τ 2

)
. (90)

In this case, we have an L solution as

R ≃ 2
√
η

√
3

9eβ + 1

√
∆α

α
(in)
C

, (91)

q ≃ 9(eβ + 1)

9eβ + 1

∆α

α
(in)
C

, (92)

ϵg ≃ 1

2
− 2

π2

R2

η
≃ 1

2
− 24

π2

1

9eβ + 1

∆α

α
(in)
C

. (93)

Thus, we obtain β̄R = 1/2, β̄q = 1, and β̄ϵ = 1.

(iii) Output noise

I
(o)
1 and I

(o)
2 , respectively given by Eqs. (46) and (47), are expressed by using those for

the noiseless case as

I
(o)
1 = λJ1 + (1− 2λ)I

(n)
1 , (94)

I
(o)
2 = (1− 2λ)I

(n)
2 , (95)

J1 = 2

∫
Dt1

∫
Dt2t1

h(Y1)Ha(Y2)

Φ+(Y1, Y2)
. (96)

J1 is estimated as

J1 = −γ3 8a

π2(1 + e−β)

1

(1 + γ2)3/2
+O(γ5). (97)

We set x = ζ2 and y = γ2 and obtain

α
(o)
C =

π2

8a(1− 2λ)
, (98)

y0 = 0, (99)

y1 =
3(1− 2λ)(eβ + 1)

(3− 2λ)eβ − (1 + 2λ)
, (100)

x0 =

2

(
1− λ(1 + eβ)

)
eβ − 1

. (101)
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Note that the solution can be negative. The condition that the solution is non-negative

is

β ≤ ln
1− λ

λ
. (102)

In this case, we obtain an L solution as

R ≃

√
6(1− λ(eβ + 1))

(3− 2λ)eβ − (1 + 2λ)

√
∆α

α
(o)
C

, (103)

q ≃ y ≃ 3(1− 2λ)(eβ + 1)

(3− 2λ)eβ − (1 + 2λ)

∆α

α
(o)
C

, (104)

ϵg ≃ 1

2
− (1− 2λ)

2

π2
R2 ≃ 1

2
− 1− 2λ

π2

12(1− λ(eβ + 1))

(3− 2λ)eβ − (1 + 2λ)

∆α

α
(o)
C

. (105)

Thus, we obtain β̄R = 1/2, β̄q = 1, and β̄ϵ = 1. Now, let us consider the latter case.

3.5.2 Spin glass state

In this subsection, we study the case that the positivity condition for x̃0 or x0 is

broken. We define βSG as ln(2+τ2

τ2
) in the input noise case and ln(1−λ

λ
) in the output

noise case. We define Anoise as

Anoise =

η for input noise,

1
1−2λ

for output noise.
(106)

βSG is characterized by

eβSG =
Anoise + 1

Anoise − 1
, (107)

that is,

a(βSG) =
eβSG − 1

eβSG + 1
=

1

Anoise

. (108)

For β > βSG, we found two kinds of solutions, in one solution R > 0 and q > 0, and in

the other solution R = 0 and q > 0. The former we call the L solution. Since R = 0

and q ̸= 0, we call the latter a spin glass (SG) solution. The SG solution satisfies

q3/2 = 2α(1− e−β)I
(n)
1 , (109)

I
(n)
1 =

∫
Dt1

∫
Dt2t1

h(Y1)Ha(Y2)

Φ+(Y1, Y2)
. (110)

q does not depend on Anoise. The critical value of α, αSG, above which the SG solution

exists for any β is

αSG =
π2

8a2
. (111)
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αSG also does not depend on Anoise. The L solution bifurcates from the SG solution, and

the critical capacity αL above which the L solution exists for β > βSG is determined by

1

1 + γ2
= 2αL(1− e−β)

1

γ3
Ĩ1(γ), (112)

Anoise =
4αL

π

1

γ2
Ĩ2(γ), (113)

Ĩ1(γ) = 2

∫
Dt1

∫
Dt2t1

h(γt1)H(γt2)

Φ+(γt1, γt2)
, (114)

Ĩ2(γ) =

∫
Dt1

∫
Dt2t1t2 ln

(
Φ+(γt1, γt2)

)
. (115)

For noisy cases, αc is expressed as αc = aAnoiseαSG. From Eq. (108), αC(TSG, Anoise) =

αSG(TSG), where TSG = 1/βSG. Furthermore, it is easily proved that as q tends to

0, αL(T,Anoise) tends to αC(T,Anoise) with fixed Anoise. This happens at T = TSG.

That is, αC(TSG, Anoise) = αL(TSG, Anoise) = αSG(TSG) holds.In Fig. 2, we display the T

dependences of αL, αC, and αSG with Anoise fixed. P, L, and SG denote the para, learning,

ans spin glass states, respectively. From the figure, there seems to be a parameter region

in which only the SG solution exists. However, numerical results do not exhibit the SG

state as shown in the next section. In order to find appropriate solutions, we study the

AT stability of the solutions in sect. 4.

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 0  1  2  3  4

T

α
SG L

SG P

L

(b)

 0

 100

 200

 300

 400

 500

 0  1  2  3  4

T

α SG L

SG L
P

Fig. 2. T dependences of αC(T ), αL(T ), and αSG(T ). Solid curve: αC, dashed curve: αL, dashed

dotted curve: αSG. P: para state, L: learning state, SG: spin glass state. (a) Anoise = 2.25, τ =
√
5
2 , λ =

5
18 , (b) Anoise = 5, τ = 2, λ = 2

5 .
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3.6 Learning behavior for large α

In this subsection, we study R and q when α tends to ∞. From numerical simula-

tions, we observed that R and q tend to 1 as α → ∞. Thus, we define ∆R = 1 − R

and ∆q = 1− q and study the asymptotic forms of ∆R and ∆q. The strategy used to

derive the asymptotic behavior is to evaluate I1 and I2 by performing variable trans-

formations. For the noiseless and output noise cases, we set t1 = u1/γ for both I1 and

I2. For the input noise case, for I1 we set t1 = u1/γ, and for I2 we set t1 = u1/γ and

I2 = u2/γ and perform integration by parts.

3.6.1 Noiseless case

For R ∼ 1 and q ∼ 1, γ ≫ 1 and ζ ≫ 1 follow. We define χ ≡ q−R2

1−q
. We obtain

consistent results when χ is assumed to tend to a constant as α → ∞. We estimate I
(n)
1

and I
(n)
2 as

I
(n)
1 ≃ − 2Q2

√
2π

g1(χ, β), (116)

I
(n)
2 ≃ − 2Q2

√
2π

g2(χ, β), (117)

g1(χ, β) =

∫
Duu

H(−u/χ)

Ĥ(u)
, (118)

g2(χ, β) = χ2

∫
Duu ln Ĥ(χu) = χ3(1− e−β)

∫
Du

h(χu)

Ĥ(χu)
> 0, (119)

where Ĥ(u) = H(−u) + e−βH(u). From the SPEs, we obtain

∆q ≃ q0α
−2, (120)

∆R ≃ R0α
−2, (121)

where q0 =

(√
2πχ3/(4g2)

)2

and R0 = q0 − (1− e−β)2q
3/2
0 g1/

√
2π. χ is determined by

2R0 = (1 + χ2)q0. (122)

To derive these results, g2 > 0 is necessary, which is satisfied. We define the exponents

β̂ as ∆R ∝ α−β̂R , ∆q ∝ α−β̂q , and ∆ϵ ≡ ϵg − ϵg|R=1 ∝ α−β̂ϵ . Since ∆ϵ ≃ 2
π

√
2
√
∆R,

β̂ϵ = β̂R/2 follows. Thus, we have β̂R = β̂q = 2 and β̂ϵ = 1.
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3.6.2 Input noise

In this case, ζ̃ =
√

R
ηq−R2 → 1√

η−1
as α → ∞. We define χ̃ =

√
ηq−R2

1−q
, which tends

to ∞ as α → ∞. We obtain

I
(i)
1 ≃ Q2

√
2π

g3(β), (123)

I
(i)
2 ≃ −

√
η − 1

ηπ2
(1− e−β)ĝ(β), (124)

g3(β) = −
∫

Duu
1

Ĥ(u)
= (1− e−β)

∫
Du

h(u)(
Ĥ(u)

)2 > 0, (125)

ĝ(β) =

∫
Du1Du2

2Ψ+(u1, u2)− (1− e−β)Ha(u1)Ha(u2)(
Ψ+(u1, u2)

)2 > 0. (126)

Thus, we obtain

∆q ≃ q0α
−1, (127)

∆R ≃ R0α
−1/2, (128)

where q0 = (η − 1)π2/

(
2(1 − e−β)ĝ

)
and R0 = (1 − e−β)q

3/2
0 g3/

√
2π. To derive these

results, ĝ > 0 and g3 > 0 are necessary, which are satisfied. We note that q0 > 0 for

η > 1 and that learning occurs for any τ > 0, irrespective of the noise amplitude. ∆ϵ is

evaluated as ∆ϵ ≃ 4

π2
√

(η−1)
sin−1

(
1√
η
∆R

)
. Thus, we obtain β̂R = β̂ϵ = 1/2 and β̂q = 1.

3.6.3 Output noise

As in the noiseless case, we assume that χ tends to a constant as α → ∞. We

estimate I
(o)
1 and I

(o)
2 as

I
(o)
1 ≃ − 2Q2

√
2π

g̃1(χ, β), (129)

I
(o)
2 ≃ − 2Q2

√
2π

g̃2(χ, β), (130)

g̃1(χ, β) = −λg3(χ, β) + (1− 2λ)g1(χ, β), (131)

g̃2(χ, β) = (1− 2λ)g2(χ, β). (132)

Equations (129) and (130) are similar to Eqs. (116) and (117). g̃2 is positive for λ < 1/2.

Thus, we obtain the same asymptotic forms of ∆q and ∆R as in the noiseless case, and

q0 and R0 are obtained by replacing g1 and g2 with g̃1 and g̃2 in the expressions for q0
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and R0 in the noiseless case.

∆q ≃ q0α
−2, (133)

∆R ≃ R0α
−2. (134)

∆ϵ is evaluated as ∆ϵ ≃ (1− 2λ) 4
π

√
2
√
∆R. Thus, we obtain β̂R = β̂q = 2 and β̂ϵ = 1.

From these results, we conclude that learning always occurs in the noiseless case,

for τ > 0 in the input noise case, and for λ < 1/2 in the output noise case for large α.

4. AT Stability

As shown later, there are discrepancies between the theoretical and numerical results

in the input and output noise cases for small T with fixed Anoise or for large Anoise

with fixed T . In these regions, the SG solution was expected to exist but it was not

found numerically. In order to resolve the discrepancies, we study the AT stability. As

usual, we denote the eigenvalues of the Hessian matrix as λi and λ′
i, i = 1, 2, 3. i = 3

corresponds to the replicon mode. We assume that Rl = R and ql = q for l = 1, 2.

We found that λ1 = λ2 and λ′
1 = λ′

2. By using the standard recipe, we calculate these

eigenvalues for general Boolean functions. Below, we give the formulae for R = Rl and

q = ql(l = 1, · · · , K) for simplicity.

4.1 Input noise case

In the input noise case, we obtain the following formulae:

λ1λ
′
1 =

1− 3q

1− q

∫
[
∏
l

Dtl]
∑
σ=±1

Sσ({X̃l})Aσ, (135)

λ3λ
′
3 =

∫
[
∏
l

Dtl]
∑
σ=±1

Sσ({X̃l})Bσ, (136)

Sσ(X̃1, X̃2) = Tr{σl} △
σ
t ({σl})

∏
l

H(σlX̃l), (137)

X̃l = ζ̃tl, ζ̃ =
R√

ηq −R2
,

Aσ
l =

(
ẑ2l + (ẑl)

2

)(
ẑ2l + 3(ẑl)

2

)
, (138)

Bσ
l ≡

(
ẑ2l + (ẑl)

2

)2

, (139)

ẑl =
h(Yl)

Φσ
β,s({Yk})

Tr{σk}△̃
σ

s,β({σk})[
∏
k ̸=l

H(σkYk)]σl, (140)

18/70



J. Phys. Soc. Jpn.

ẑ2l = − 1

Φσ
β,s({Yk})

Tr{σk}△̃
σ

s,β({σk})
∏
k

H(σkYk)σlYl|φ(σlYl)|,

= γ
Kσ

l ({Yk})
Φσ

β,s({Yk})
, (141)

Yl = γtl, γ =

√
q

1− q
, φ(x) =

H ′(x)

H(x)
= − h(x)

H(x)
, (142)

Kσ
l ({Yk}) = Tr{σk}△̃

σ

s,β({σk})[
∏
k

H(σkYk)]σltlφ(σlYl). (143)

We define the following quantities to evaluate the AT stability:

Λ1 ≡ 2αλ1λ
′
1 − 1, (144)

Λ3 ≡ 2αλ3λ
′
3 − 1. (145)

The condition that a solution is stable is that both Λ1 and Λ3 are negative. For the

Parity machine with K = 2, we explicitly obtain the following:

Tr{σk}△̃
σ

s,βH(σmYm)σl = Tr{σk}

(
e−β + (1− e−β)△σ

s,β ({σk})
)
H(σmYm)σl

= (1− e−β)Tr{σk} △
σ
s,β ({σk})H(σmYm)σl

= (1− e−β)σHa(Ym), m ̸= l, (146)

Kσ
l ({Yk}) = −1

γ
(1− e−β)h(Yl)YlσHa(Ym), m ̸= l, (147)

ẑl =
h(Yl)

Φσ
β,s({Yk})

g6,l({tk}k ̸=l), (148)

ẑ2l = −(1− e−β)
h(Yl)Yl

Φσ
β,s({Yk})

σHa(Ym), m ̸= l, (149)

Aσ
l =

h(Yl)
2

[Φσ
β,s({Yk})]4

(1− e−β)2
(
Ha(Ym)

)2

×[YlσΦ
σ
β,s({Yk})− (1− e−β)Ha(Ym)h(Yl)]

×[YlσΦ
σ
β,s({Yk})− 3(1− e−β)Ha(Ym)h(Yl)], m ̸= l,

(150)

Bσ
l =

h(Yl)
2

[Φσ
β,s({Yk})]4

(1− e−β)2
(
Ha(Ym)

)2

×[YlσΦ
σ
β,s({Yk})− (1− e−β)Ha(Ym)h(Yl)]

2, m ̸= l.

(151)

Φσ(Y1, Y2) = Φσ
β,s({Yk}) = e−β + (1− e−β)H2(Y1, σY2). (152)
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The condition that a solution is stable is that both Λ1 and Λ3 are negative.

4.2 Output noise case

In the output noise case, Tr{σl} △σ
t ({σl})

∏
l H(σlX̃l) and X̃l should be replaced by

λ + (1 − 2λ)Tr{σl} △σ
t ({σl})

∏
l H(σlXl) and Xl = ζtl =

R√
q−R2

tl, respectively. Thus,

for K = 2, we obtain the results for the output noise case by replacing Sσ(X̃1, X̃2) and

X̃l with Sσ(X1, X2) = λ+ (1− 2λ)H2(X1, σX2) and Xl, respectively.

5. Numerical Results for Parity Machine

To begin with, we study learning behaviors for small α. First, we study the α

dependences of Rl for T = 1. We performed MCMCs using the simulated annealing

method.

Here, we explain the numerical method of MCMCs for Figs. 1-9. The same method

is used unless otherwise stated. Starting from β = 0.1, when the system reached its

equilibrium, β was increased in steps of 0.1 up to 1. We adopted 100 samples. For each

sample, after 100 Monte Carlo sweeps (MC sweeps), we started taking thermal averages.

Here, one MC sweep corresponds to M×K updates. From 100 MC sweeps, the running

average values of Rl were calculated every 10 MC sweeps. After 150 MC sweeps, we

started checking the convergence. If the difference between the average of R1 up to k

MC sweeps and that up to k + 10 MC sweeps was less than 0.001, we considered that

the system had reached its equilibrium.

We performed simulations for several values of M , e. g., M = 10, 20, and 30 for the

noiseless, input noise, and output noise cases, and found that the results for M = 20

and 30 are almost the same. Furthermore, we found that the simulation results for R1

and R2 are almost the same. Therefore, below we display the results of R1 for M ≥ 20.

We set parameters so that ϵmin[≡ ϵg(R = 1)] is 5/18 for noisy cases if not otherwise

specified. That is, for the input noise τ = 1/
√
3 and the output noise λ = 5/18. In

Figs. 3-5, we display the α dependences of R1 and the generalization error ϵg for the

noiseless, input noise, and output noise cases, respectively.

First of all, we note that the error bars are larger for the output noise case than

for the noiseless and input noise cases. This is because the “strength” of noise Anoise

is 9/4 for the output noise, while it is 0 and 4/3 for the noiseless and output noise

cases, respectively. We note that for large α, the theoretical and numerical results agree

reasonably well. However, for small α, where learning does not take place, the simulation
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Fig. 3. α dependences of R1 and the generalization error ϵg for noiseless case. Curves: RS solutions,

symbols: MCMCs. M = 20, T = 1. Averages are taken from 100 samples. Vertical lines are error bars.

Annealing schedule: β = 0.1, 0.2, · · · , 1.0. (a) R1, (b) ϵg.
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Fig. 4. α dependences of R1 and the generalization error ϵg for case of input noise. Curves: RS

solutions, symbols: MCMCs. M = 20, T = 1. Input: τ = 1/
√
3. (a) R1, (b) ϵg.
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Fig. 5. α dependences of R1 and the generalization error ϵg for case of output noise. Curves: RS

solutions, symbols: MCMCs. M = 20, T = 1. λ = 5/18. (a) R1, (b) ϵg.
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results differ from theoretical values. The numerical data are all positive, whereas they

are theoretically expected to be 0. . This is because we numerically calculated the

absolute value of R1, |R1|, since the system has reflectional symmetry. That is, the

output σ is the same for {wl} and {−wl}. In order to investigate the value of αC, we

calculated the histograms of R1 at small values of α (see Fig. 6). We observe that the

value of R1 that gives the maximum frequency, Rmax, changes from 0 to nonzero values

as α increases. In Fig. 7, we display the α dependences of Rmax and the theoretical

results of R1(α). This confirms the existence of the nonzero αC, although there still

exists a difference between the numerical and theoretical results. We consider that this

is a finite size effect. In Figs. 8 and 9, we display the ln(∆α) dependences of lnRmax and

ln∆ϵ for α > αC, respectively. Here, ∆α = α − αC and ∆ϵ = ϵg|R=0 − ϵg. Dotted lines

denote the theoretical exponents β̄R = 1/2 and β̄ϵ = 1. Numerical data are scattered

but consistent with the theoretical data.
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Fig. 6. Histograms of R1 observed by MCMCs. M = 20, number of samples = 1000, T = 1. (a)-(d):

Noiseless, αC = 2.66. (a) α = 2, (b) α = 2.5, (c) α = 3, (d) α = 4. (e)-(h): Input noise, αC = 3.56, τ =

1/
√
3. (e) α = 3.5, (f) α = 4, (g) α = 5, (h) α = 6. (i)-(l): Output noise, αC = 6.01, λ = 5/18. (i)

α = 5, (j) α = 6, (k) α = 8, (l) α = 14.
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Fig. 7. α dependences of Rmax for noiseless, input noise and output noise cases.

Curves: RS solutions, symbols: MCMCs. M = 20, T = 1. ϵmin = 5/18 for noisy case. (a) Noiseless, (b)

input noise, τ = 1/
√
3, (c) output noise, λ = 5/18.
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Fig. 8. ln∆α dependences of lnRmax for noiseless, input noise, and output noise cases. ∆α = α−αC.

Curves: RS solutions, symbols: MCMCs, dashed lines: theoretical value β̄R = 0.5. M = 20, T =

1, ϵmin = 5/18. (a) Noiseless, (b) input noise, τ = 1/
√
3, (c) output noise, λ = 5/18.
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Fig. 9. ln∆α dependences of ln∆ϵ for noiseless, input noise, and output noise cases. ∆α = α −
αc,∆ϵ = ϵg|R=0−ϵg. Curves: RS solutions, symbols: MCMCs.M = 20, T = 1. Dashed lines: theoretical

value β̄ϵ = 1. (a) Noiseless, (b) input noise, τ = 1/
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3, (c) output noise, λ = 5/18.
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Next, we study the temperature dependences of order parameters by performing

EXMCs. In the EXMCs, for example, we prepared an odd number of temperatures,

T1, T2, · · · , T2L+1. Every five MC sweeps, we exchanged temperatures T1 and T2, T3 and

T4, · · · , T2L−1 and T2L, or T2 and T3, T4 and T5, · · · , T2L and T2L+1. At each temperature,

we calculated the averages of R1 and q1 after a transient of 104 MC sweeps. From 104

MC sweeps to 5 × 104 or 105 MC sweeps, we took data every 100 MC sweeps, and

calculated the averages. We took the sample average for 100 samples. We use the same

method in Fig. 10-13 unless otherwise stated. In Fig. 10, we display the theoretical and

numerical results for the noiseless case for α = 10. The numerical results confirm the

validity of the theoretical results, at least for T ≤ 3.5. We confirmed that both results

agree for all temperatures when α = 30 as long as learning takes place. However, there

exists disagreement between the theoretical and numerical results in the paramagnetic

region of T ≥ 4 when α = 10. That is, the numerical values of R1 are positive at high

temperatures despite the theoretical prediction of zero. The reason for this is that we

took the average of the absolute value of R1, |R1|. In Fig. 11, we display the results

for the input noise case with τ =
√
5
2

for α = 10 and those for the output noise case

with λ = 5
18

for α = 10 and 30 in Figs. 12 and 13. The values of τ and λ correspond to

Anoise = 2.25. As is seen in Figs. 11, 12 and 13, in addition to the paramagnetic region,

there exists disagreement between theoretical and numerical results in the SG region

in both the input and output noise cases. That is, we numerically obtained R1 > 0 in

the regions where the SG was expected theoretically for noisy cases. The discrepancy

between numerical and theoretical results in the low-temperature region suggests that

replica symmetry breaking (RSB) takes place at low temperatures as in the case of the

learning of one-layer perceptrons with spherical weights.3,4
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Fig. 10. T dependences of R1 and q1 for noiseless case. Curves: RS solutions, symbols: EXMCs.

M = 20. Averages are taken from 100 samples. Vertical lines are error bars. (a) R, (b) q1 for α = 10.
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Fig. 11. T dependences of R1 and q1 for input noise. Curves: RS solutions, symbols: EXMCs. M =

20. τ =
√
5/2, Anoise = 2.25. (a) R1, (b) q1 for α = 10.
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Fig. 12. T dependences of R1 and q1 for output noise. Curves: RS solutions, symbols: EXMCs.

λ = 5/18, Anoise = 2.25. (a) R, (b) q1 for α = 10, M = 30.
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Fig. 13. T dependences of R1 and q1 for output noise. Curves: RS solutions, symbols: EXMCs.

λ = 5/18, Anoise = 2.25. (a) R, (b) q1 for α = 30, M = 20.
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To resolve the discrepancy, we study the AT stability. We display Λ1,Λ3, and the free

energy per input in Figs. 14-16 for the input noise case and in Figs. 17-22 for the output

noise case. The free energy of the L solution is lower than that of the SG solution for all

cases. That is, the SG solution is metastable even if it is AT stable. As the temperature

is lowered, the L solution becomes AT unstable and then the SG solution becomes AT

unstable in the input noise and output noise cases for α = 10. In contrast, for α = 30

in the case of output noise, the SG solution first becomes AT unstable and then the

L solution becomes unstable as the temperature is lowered. Thus, in all the cases we

studied, an RSB L solution is expected to appear. Therefore, in learning under the

existence of noise, we conclude that learning takes place even in the limit of T → 0.
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Fig. 14. Temperature dependences of Λ1 and Λ3 for case of input noise. τ =

√
5/2, α = 10. Solid

curves: L solution, dashed curves： SG solution, dotted lines: zero line. (a) Λ1, (b) Λ3.
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Fig. 16. Temperature dependences of free energy per input for case of input noise. τ =

√
5/2. Solid

curve: L solution, dashed curve: SG solution. α = 10.
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Fig. 17. Temperature dependences of Λ1 and Λ3 for case of output noise. λ = 5/18, α = 10. Solid

curves: L solution, dashed curves: SG solution, dotted lines: zero line. (a) Λ1, (b) Λ3.
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Fig. 18. Temperature dependences of Λ3 for case of output noise [Enlargement of Fig. 16(b)]. λ =
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Fig. 19. Temperature dependences of free energy per input. λ = 5/18, T = 1. Solid curve: L solution,

dashed curve: SG solution. α = 10.
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Fig. 20. Temperature dependences of Λ1 and Λ3 for case of output noise. λ = 5/18, α = 30. Solid

curves: L solution, dashed curves: SG solution, dotted lines: zero line. (a) Λ1, (b) Λ3.
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Fig. 22. Temperature dependences of free energy per input. λ = 5/18, T = 1. Solid curve: L solution,

dashed curve: SG solution. α = 30.

The value of Anoise = 2.25 that we studied is rather small. Let us study the Anoise

dependences of learning. In Fig. 23, we display the α dependences of R1 and q1 for a

large value of noise, λ = 0.4, and in Fig. 24, the λ dependences of R1 and q1 for α = 35

for several temperatures in the output noise case. From Fig. 23, it seems that as α

increases, although the distributions of R1 and q1 become broad, learning does not take

place for λ = 0.4. This is more clearly observed in Fig. 24. In these figures, we took

the sample averages not only changing the initial conditions of the student but also the

examples and teacher’s outputs. If we fix the examples and the teacher’s output, we

obtain the results shown in Fig. 25.

31/70



J. Phys. Soc. Jpn.

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8  1

(b)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8  1

(c)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8  1

(d)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8  1

(e)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8  1

(f)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8  1

(g)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8  1

(h)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8  1

Fig. 23. α dependences of histograms of R1 and q1 obtained by MCMCs for case of output noise.

λ = 0.4,M = 30, number of samples = 1000. Annealing schedule: β = 0.1, 0.2, · · · , 0.5. The convergence
condition is dc = 10−5. Solid line: T = 10, dashed line: T = 5, dotted line: T = 2. Acceptance ratios

at T = 2 : 38% (α = 25), 35% (α = 35), 24% (α = 45), 19% (α = 55). (a)-(d): R1, (e)-(h): q1. (a), (e):

α = 25, (b), (f): α = 35, (c), (g): α = 45, (d), (h): α = 55.
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Fig. 24. λ dependences of histograms of R1 and q1 obtained by MCMCs for case of output noise.

α = 35,M = 30, number of samples = 1000. Annealing schedule: β = 0.1, 0.2, · · · , 1.0. The convergence
condition is dc = 10−5. Solid lines: T = 10, dashed lines: T = 2, dotted lines: T = 1. Acceptance ratios

at T = 1 : 5.6% (λ = 0.1), 6.0% (λ = 0.2), 5.4% (λ = 0.3), 4.5% (λ = 0.4). (a)-(d): R1, (e)-(h): q1. (a),

(e): λ = 0.1, (b), (f): λ = 0.2, (c), (g): λ = 0.3, (d), (h): λ = 0.4.
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Fig. 25. Histograms of R1, R2, q1 and q2 at 100000 MCS for case of output noise. Number of initial

conditions is 100x2. Annealing schedule: β = 0.1, 0.2, · · · , 1.0. Solid lines: T = 10, dashed lines: T = 2,

dotted lines: T = 1. λ = 0.4, α = 25,M = 30. (a) R1, (b) R2, (c) q1, (d) q2.

We can observe the peak at q1 ≃ 1 and q2 ≃ 1 for T = 1. Next, we display the

theoretical and numerical results in Fig. 26 for the output noise case. We found that

there are three non-trivial solutions, the 1st L solution (L1), the 2nd L solution (L2),

and the SG solution. We denote the L1 solution as the solution that bifurcates from the

SG solution and the L2 solution as the solution that bifurcates from the para solution.

We next study the AT stability and the free energy. The results are shown in Figs. 27

and 28, respectively. From these figures, we note that the L1, L2, and SG solutions are

stable but the free energy of the L2 solution is lower than that of the L1 solution and

the SG solution has the largest free energy. However, as is seen from Fig. 26, although

33/70



J. Phys. Soc. Jpn.

the L2 solution agrees with the simulation results at higher λ, at lower λ the L1 solution

agrees with the simulation results. Therefore, here, there appears to be disagreement

between the theoretical and numerical results. We consider the reason for this as follows.

As written in the caption of Fig. 25, the acceptance ratio of the Metropolis method is

only about 5 percent. This value is too low to reach the equilibrium and the system

might be trapped to a local minimum of the free energy.

Aside from this disagreement, we conclude that learning takes place for the input noise

case with any noise amplitude and for the output noise case when the probability that

the teacher’s output is reversed is less than one-half.

Now, let us study the asymptotic behavior of learning as α → ∞. In Figs. 29-34, we

display the results obtained by MCMCs for the noiseless, input noise, and output noise

cases. The method of MCMCs is the same as before. We display the α dependences of R1

and q1 and the ln(α) dependences of ln∆R1 and ln∆q1 for α ∈ [25, 50] in the noiseless

case and for α ∈ [100, 200] in the noisy cases. Here, ∆R1 = 1−R1 and ∆q1 = 1−q1. The

method used is simulated annealing with a mall α.The numerical results are consistent

with the theoretically obtained exponents β̂R and β̂q, as is seen from Figs. 26, 28, and

30.
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Fig. 26. λ dependences of R1 and q1 for case of output noise. Curves: RS solutions, solid curve:

L1 solution, dashed curve: L2 solution, dotted curve: SG solution. Symbols: MCMCs, M = 40, T =

1, α = 25. Averages are taken from 100 samples. Vertical lines are error bars. Annealing schedule:

β = 0.1, 0.2, · · · , 1.0. (a) R1, (b) q1.

34/70



J. Phys. Soc. Jpn.

(a)

-80

-70

-60

-50

-40

-30

-20

-10

 0

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

Λ1

λ

(b)

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

Λ3

λ
Fig. 27. λ dependences of Λ1 and Λ3 for case of output noise. α = 25. Curves: RS solutions, solid

curve: L1 solution, dashed curve: L2 solution, dotted curve: SG solution. (a) Λ1, (b) Λ3.
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Fig. 28. λ dependence of free energy per input for case of output noise. α = 25. Curves: RS solution,

solid curve: L1 solution, dashed curve: L2 solution, dotted curve: SG solution.
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Next, we study
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Fig. 29. α dependences of R1 and q1 for noiseless case. Curves: RS solutions, symbols: MCMCs.

M = 20, T = 1. Averages are taken from 100 samples. Vertical lines are error bars. Annealing schedule:

β = 0.1, 0.2, · · · , 1.0. (a) R1, (b) q1.
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Fig. 30. lnα dependences of ln∆R1 and ln∆q1 for noiseless case. Curves: RS solutions, symbols:

MCMCs. M = 20, T = 1. Dashed lines denote theoretical values of exponents, β̂R = 2, β̂q = 2. (a)

ln∆R1, (b) ln∆q1.

6. And Machine

Next, we study the And machine. As in the case of the Parity machine, we consider

two units, that is K = 2. The output by the And machine is 1 if outputs by two units

are 1, and -1 otherwise. In the below, we show the SPEs. The derivations are given in

Appendix C. As in the Parity machine, we assume Rl = R and ql = q for l = 1, 2.

X̃l, Xl, Yl, γ, ζ̃ and ζ are the same as those for the Parity machine.
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Fig. 31. α dependences of R1 and q1 for case of input noise. Curves: RS solutions, symbols: MCMCs.

M = 20, T = 1, τ = 1/
√
3. (a) R1, (b) q1.
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Fig. 32. lnα dependences of ln∆R1 and ln∆q1 for case of input noise. Curves: RS solutions, symbols:

MCMCs. M = 20, T = 1. Dashed lines denote theoretical values of exponents, β̂R = 1/2, β̂q = 1. (a)

ln∆R1, (b) ln∆q1.
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Fig. 33. α dependences of R1 and q1 for case of output noise. Curves: RS solutions, symbols:

MCMCs. M = 20, T = 1, λ = 5/18. (a) R1, (b) q1.
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Fig. 34. lnα dependences of ln∆R1 and ln∆q1 for case of output noise. Curves: RS solutions,

symbols: MCMCs. M = 20, T = 1. Dashed lines denote theoretical values of exponents, β̂R = 2, β̂q = 2.

(a) ln∆R1, (b) ln∆q1.

6.1 Input noise

G1

n
is

G1

n
=

∫
Dt1Dt2{H(X̃1)H(X̃2) lnΦ+(Y1, Y2) + Ĥ(X̃1, X̃2) lnΦ−(Y1, Y2)}, (153)

where Φ+(Y1, Y2) = H2(Y1, Y2) + e−βĤ(Y1, Y2) = e−β + (1 −
e−β)H(Y1)H(Y2), Φ−(Y1, Y2) = 1+ e−β −Φ+(Y1, Y2), and Ĥ(Y1, Y2) = 1−H(Y1)H(Y2).

G2

n
is

G2

n
=

1

2

(
ln(2π(1− q)) +

1−R2

1− q

)
. (154)

The SPEs are given by

q2 −R2 = α(1− e−β)
√
q(1− q)J

(i)
1 , (155)

R(ηq −R2)
3
2 = −αηq(1− q)J

(i)
2 (156)

J
(i)
1 = −2

∫
Dt1Dt2t1h(Y1)H(Y2)

1

Φ+(Y1, Y2)Φ−(Y1, Y2)

×{Φ+(Y1, Y2)− (1 + e−β)H(X̃1)H(X̃2)}, (157)

J
(i)
2 = −2

∫
Dt1Dt2h(X̃1)H(X̃2)t1 ln

(
Φ−(Y1, Y2)

Φ+(Y1, Y2)

)
. (158)

6.2 Output noise

G1

n
is

G1

n
=

∫
Dt1Dt2

[{
λ+ (1− 2λ)H(X1)H(X2)

}
lnΦ+(Y1, Y2)

+
{
λ+ (1− 2λ)Ĥ(X1, X2)

}
lnΦ−(Y1, Y2)

]
. (159)
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The SPEs are

q2 −R2 = α(1− e−β)
√

q(1− q)J
(o)
1 , (160)

R(q −R2)
3
2 = −αq(1− q)J

(o)
2 , (161)

J
(o)
1 = −2

∫
Dt1Dt2t1h(Y1)H(Y2)

1

Φ+(Y1, Y2)Φ−(Y1, Y2)

×[Φ+(Y1, Y2)− (1 + e−β){λ+ (1− 2λ)H(X1)H(X2)], (162)

J
(o)
2 = −2(1− 2λ)

∫
Dt1Dt2h(X1)H(X2)t1 ln

(
Φ−(Y1, Y2)

Φ+(Y1, Y2)

)
. (163)

6.3 Noiseless case

The SPEs are

q2 −R2 = α(1− e−β)
√
q(1− q)J

(n)
1 , (164)

R(q −R2)
3
2 = −αq(1− q)J

(n)
2 , (165)

J
(n)
1 = −2

∫
Dt1Dt2t1h(Y1)H(Y2)

1

Φ+(Y1, Y2)Φ−(Y1, Y2)

×[Φ+(Y1, Y2)− (1 + e−β)H(X1)H(X2)], (166)

J
(n)
2 = −2

∫
Dt1Dt2h(X1)H(X2)t1 ln

(
Φ−(Y1, Y2)

Φ+(Y1, Y2)

)
. (167)

6.4 Generalization error

Here, we give the expressions for the generalization error for the And machine.

(1) Noiseless

ϵg =
3

8
− 1

4π

(
sin−1R1 + sin−1 R2

)
− 1

2π2
sin−1R1 sin

−1R2. (168)

(2) Input noise

ϵg =
3

8
− 1

4π

(
sin−1

(
R1√
η

)
+ sin−1

(R2√
η

))
− 1

2π2
sin−1

(R1√
η

)
sin−1

(R2√
η

)
.(169)

(3) Output noise

ϵg =
3

8
+

λ

4
− 1− 2λ

4π
(sin−1 R1 + sin−1R2)

−1− 2λ

2π2
sin−1R1 sin

−1R2. (170)

6.5 Behavior for α ≪ 1

We obtain consistent results for ζ = O(1) and ζ̃ = O(1).
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6.5.1 Input noise

Let us estimate K
(i)
1 . We estimate Φ+ and Φ− as follows:

Φ+(Y1, Y2) = e−β + (1− e−β)H(γt1)H(γt2) = b[1− (1− e−β)

2
√
2πb

(γt1 + γt2)] +O(γ3),(171)

b =
1

4
(1 + 3e−β), (172)

Φ−(Y1, Y2) = 1 + e−β − Φ+(γt1, γt2) = c[1 +
(1− e−β)

2
√
2πc

(γt1 + γt2)] +O(γ3), (173)

c =
1

4
(3 + e−β), (174)

ln
Φ−(Y1, Y2)

Φ+(Y1, Y2)
= A+B(γt1 + γt2) +O(γ3), (175)

A = ln
c

b
, B =

(1− e−β)

2
√
2π

(
1

b
+

1

c
). (176)

Therefore, we have

J
(i)
2 = − Bγ√

2π

1

(1 + ζ̃2)
3
2

+O(γ3). (177)

Substituting this into Eq. (156), we have

R ≃ B√
2πη

α = R0α, (178)

where R0 =
B√
2πη

. From ζ̃ = R√
ηq−R2

and defining q0 =
1+ζ̃2

ζ̃2η
R2

0, we have

q ≃ q0α
2. (179)

The exponents β̄ are defined as R ∝ αβ̄R , q ∝ αβ̄q , and ∆ϵ ≡ ϵg|R=0− ϵg ∝ αβ̄ϵ for small

α. Since ∆ϵ is expressed as ∆ϵ ≃ R
2π

√
η
, we obtain β̄R = β̄ϵ. Thus, we obtain β̄R = β̄ϵ = 1

and β̄q = 2.

6.5.2 Output noise

Using the estimate of J
(i)
2 , in Eq. (177), we have

J
(o)
2 = −Bγ(1− 2λ)√

2π

1

(1 + ζ2)
3
2

+O(γ3). (180)

Substituting this into Eq. (161) yields

R ≃ B(1− 2λ)√
2π

α = R0α, (181)

where R0 =
B(1−2λ)√

2π
. From ζ = R√

q−R2
, we have

q ≃ q0α
2, (182)
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where q0 = 1+ζ2

ζ2
R2

0. ∆ϵ is expressed as ∆ϵ ≃ 1−2λ
2π

R, and we obtain β̄R = β̄ϵ = 1 and

β̄q = 2.

6.5.3 Noiseless case

In this case, setting η = 1 in Eq. (178) or λ = 0 in Eq. (181), we have

R ≃ B√
2π

α, (183)

q ≃ q0α
2. (184)

∆ϵ ≃ 1
2π
R, and we have β̄R = β̄ϵ = 1 and β̄q = 2.

6.6 Asymptotic behavior for α ≫ 1.

Now, let us study the asymptotic learning behavior. Using the same strategy as for

the Parity machine, we derive the asymptotic forms for ∆q = 1 − q and ∆R = 1 − R.

Note that the SPEs are obtained by replacing I
(a)
l with J

(a)
l for l = 1, 2, and replacing

2α with α in the SPEs for the Parity machine.

6.6.1 Noiseless case

We assume that χ tends to a finite value as for the Parity machine. We obtain the

following results:

J
(n)
1 ≃ − 2Q2

√
2π

l1(χ, β), (185)

J
(n)
2 ≃ − 2Q2

√
2π

l2(χ, β), (186)

l1(χ, β) = −1

2

(∫
Duu

1

Ĥ(−u)
+ (1 + eβ)

∫
Duu

H(u/χ)

Ĥ(u)Ĥ(−u)

)
, (187)

l2(χ, β) = g2(χ, β). (188)

∆ϵ is expressed as ∆ϵ ≃
√
2

π

√
∆R. Since l2 > 0, we obtain the same results as for the

Parity machine, β̂R = β̂q = 2 and β̂ϵ = 1.

6.6.2 Input noise

We obtain the following results:

J
(i)
1 ≃ Q2

√
2π

l3(β), (189)

J
(i)
2 ≃ −c(η)(η − 1)

πη
2(1− e−β)l̂(β), (190)

l3(β) = g3(β), (191)
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l̂(β) =

∫
Du

1

Ĥ(u)
(> 0), (192)

c(η) =
1

2
− 1

2π
cos−1(

1
√
η
). (193)

∆ϵ is expressed as ∆ϵ ≃ 1
2π

√
η−1

(1 + 2
π
sin−1 1√

η
)∆R. Since l3 > 0 and l̂ > 0, we obtain

the same results as for the Parity machine, β̂R = β̂ϵ = 1/2 and β̂q = 1.

6.6.3 Output noise

We obtain the following results:

J
(o)
1 ≃ − 2Q2

√
2π

l̃1(χ, β), (194)

J
(o)
2 ≃ − 2Q2

√
2π

l̃2(χ, β), (195)

l̃1(χ, β) = l1(χ, β) + (1 + eβ)λ

∫
Duu

H(u/χ)

Ĥ(u)Ĥ(−u)
, (196)

l̃2(χ, β) = (1− 2λ)g2(χ, β). (197)

∆ϵ is expressed as ∆ϵ ≃ (1 − 2λ)
√
2
π

√
∆R. If λ < 1/2, l̃2 > 0 follows. Thus, we obtain

the same results as for the Parity machine, β̂R = β̂q = 2 and β̂ϵ = 1.

7. Numerical results for And Machine

For both the input and output noise models, we set ϵmin = 13/72. Thus, τ = 1/
√
3

and λ = 13/72. The methods used for the numerical simulations are similar to those in

the case of the Parity machine. First, we study the α dependences of Rl for T = 1. The

results for M = 20 and 30 are almost the same. Thus, we show the results for M = 20

below. Furthermore, we found that the simulation results for R1 and R2 are almost

the same. Therefore, we display results for only R1. In Figs. 35 - 37, we display the

α dependences of R1 and the generalization error ϵg for the noiseless, input noise, and

output noise cases, respectively. We note that for the entire range of α, theoretical and

numerical results agree reasonably well. In order to study the exponents β̄ for R1 and ϵg,

we display the lnα dependences of lnR1 and ln∆ϵ in Figs. 38 and 39, respectively. Here,

∆ϵ = ϵg|R=0−ϵg. We also display the theoretical values of β̄R and β̄ϵ by dashed lines. The

numerical and theoretical results agree reasonably well. Next, we study the temperature

dependences of the order parameters. We performed EXMCs by the same procedure as

for the Parity machine. In Figs. 40 -42, we display numerical and theoretical results for

the noiseless, input noise, and output noise cases. We take the sample average for 100
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samples. For the noiseless case, as is seen from Fig. 36, the numerical results confirm the

theoretical ones at all temperatures we studied. For the input noise case shown in Fig.

37, we also find that the numerical results and theoretical ones agree reasonably well

at all temperatures we studied except for very low temperatures. On the other hand,

as seen from Fig. 38, for the output noise case, the numerical results do not agree very

well at low temperatures, although they agree reasonably well at high temperatures.

From these results, as for the Parity machine, it seems that RSB takes place at low

temperatures.
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Fig. 35. α dependences of R1 and generalization error ϵg for noiseless case. M = 20, T = 1. Anneal-

ing schedule: β = 0.1, 0.2, · · · , 1.0. Curves: RS solutions, symbols: MCMCs. M = 20, T = 1. (a) R1,

(b) ϵg.
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Fig. 36. α dependences ofR1 and generalization error ϵg for case of input noise. Curves: RS solutions,

symbols: MCMCs. M = 20, T = 1. τ = 1/
√
3 (a) R1, (b) ϵg.
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Fig. 37. α dependences of R1 and generalization error ϵg for case of output noise. Curves: RS

solutions, symbols: MCMCs. M = 20, T = 1. λ = 13/72. (a) R, (b) ϵg.

(a)

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 0  1  2  3

lnα

lnR1

(b)

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 0  1  2  3

lnα

lnR1

(c)

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 0  1  2  3

lnα

lnR1

Fig. 38. lnα dependences of lnR1 for noiseless, input noise, and output noise cases. Curves: RS

solutions, symbols: MCMCs. M = 20, T = 1. Dashed lines: theoretical value β̄R = 1. (a) Noiseless, (b)

input noise, τ = 1/
√
3, (c) output noise, λ = 13/72.
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Fig. 39. lnα dependences of ln(∆ϵ) for noiseless, input noise, and output noise cases. Curves: RS

solutions, symbols: MCMCs. M = 20, T = 1. Dashed lines: theoretical value β̄ϵ = 1. (a) Noiseless, (b)

input noise, τ = 1/
√
3, (c) output noise, λ = 13/72.
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Fig. 40. T dependences of R1 and q1 for noiseless case. Curves: RS solutions, symbols: EXMCs.

M = 20. (a) R1, (b) q1 for α = 10, (c) R1, (d) q1 for α = 20.
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Fig. 41. T dependences of R1 and q1 for input noise. Curves: RS solutions, symbols: EXMCs. M =

20. Input: τ = 1/
√
3. (a) R1, (b) q1 for α = 10, (c) R1, (d) q1 for α = 20.
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Fig. 42. T dependences of R1 and q1 for output noise. Curves: RS solutions, symbols: EXMCs.

M = 20. Output: λ = 13/72. (a) R1, (b) q1 for α = 10. (c) R1, (d) q1 for α = 20.
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Finally, we study the asymptotic behavior of learning as α → ∞. In Figs. 39-44, we

display the results obtained by MCMCs for the noiseless, input noise, and output noise

cases. We display the α dependences of R1 and q1 and the ln(α) dependences of ln∆R1

and ln∆q1 for α ∈ [25, 100] in the noiseless case and for α ∈ [25, 200] in the noisy cases.

The method used is simulated annealing and is the same as that in the Parity machine.

The numerical results are consistent with the theoretically obtained exponents β̂R and

β̂q, as is seen from Figs. 40, 42, and 44.
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Fig. 43. α dependences of R1 and q1 for noiseless case. Curves: RS solutions, symbols: MCMCs.

M = 20, T = 1. Averages are taken from 100 samples. Vertical lines are error bars. Annealing schedule:

β = 0.1, 0.2, · · · , 1.0. (a) R1, (b) q1.
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Fig. 44. lnα dependences of ln∆R1 and ln∆q1 for noiseless case. Curves: RS solutions, symbols:

MCMCs. M = 20, T = 1. Dashed lines denote theoretical values of exponents, β̂R = 2, β̂q = 2. (a)

ln∆R1, (b) ln∆q1.
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Fig. 45. α dependences of R1 and q1 for input noise. Curves: RS solutions, symbols: MCMCs.

M = 20, T = 1, τ = 1/
√
3. (a) R1, (b) q1.

(a)

-5

-4.5

-4

-3.5

-3

-2.5

-2

 3  3.5  4  4.5  5  5.5

lnα

ln∆R1

(b)

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

 3  3.5  4  4.5  5  5.5

lnα

ln∆q1

Fig. 46. lnα dependences of ln∆R1 and ln∆q1 for input noise. Curves: RS solutions, symbols:

MCMCs. M = 20, T = 1. Dashed lines denote theoretical values of exponents, β̂R = 1/2, β̂q = 1. (a)

ln∆R1, (b) ln∆q1.
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Fig. 47. α dependences of R1 and q1 for output noise. Curves: RS solutions, symbols: MCMCs.

M = 20, T = 1, λ = 5/18. (a) R1, (b) q1.
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Fig. 48. lnα dependences of ln∆R1 and ln∆q1 for output noise. Curves: RS solutions, symbols:

MCMCs. M = 20, T = 1. Dashed lines denote theoretical values of exponents, β̂R = 2, β̂q = 2. (a)

ln∆R1, (b) ln∆q1.

8. Summary and Discussion

In this paper, we studied the learning of Boolean functions expressed by a two-layer

perceptron with and without external noise for small and large loading rates α. In order

to make the analysis easier, we studied a tree-like architecture composed of two units.

As the learning algorithm, we adopted the Gibbs algorithm. We assumed that both the

teacher and students are expressed by two M -dimensional vectors with norm
√
M . By

using the replica method, we derived the saddle point equations for order parameters Rl

and ql (l = 1, 2), where Rl is the overlap between the teacher and student and ql is the

overlap between students for unit l. We studied the input and output noise cases. In the

input noise case, an independent Gaussian noise with mean 0 and standard deviation

τ was entered in each example input to the teacher. In the output noise case, the sign

of the teacher’s output was reversed with probability λ.

8.1 Parity machine

Firstly, we summarize the theoretical results within the RS ansatz.

We assumed R1 = R2 and q1 = q2, which were confirmed by numerical simulations. We

theoretically found three phases, para (P), learning (L), and spin glass (SG) phases.

(1) P phase. Rl = ql = 0, that is, learning does not take place.

(2) L phase. Rl > 0 and ql > 0, that is, learning takes place.

(3) SG phase. Rl = 0 and ql > 0. Learning does not take place but the average of each

component of student vectors is not zero but random. This phase appears only for

noisy cases.
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For the noiseless case, we defined the critical loading rate α
(n)
C above which the L phase

appears from the P phase when the temperature is fixed. For the noisy cases, we defined

the noise amplitude Anoise as Anoise =
1

1−2λ
for the output noise case and Anoise = 1+ τ 2

for the input noise case. Furthermore, we defined three critical capacities, αL, αC, and

αSG, and one critical temperature, TSG = 1/βSG. TSG is a function of Anoise. αC is defined

for T > TSG, above which the L phase exists. αSG is defined for any temperature, and

above which the SG phase exists. αL is defined for T < TSG, above which the L phase

exists. αL and αC are functions of T and Anoise, whereas αSG depends only on T . We

sometimes denoted αL and αC by αL(T,Anoise) and αC(T,Anoise), respectively, in order

to explicitly express the dependences on T and Anoise. At T = TSG, αL, αC and αSG

coincide. We define α0(Anoise) = αL = αC = αSG. Since αL, αC, and αSG are increasing

functions as long as they are defined with fixed Anoise, we define their inverse functions

TL(α), TC(α), and T1(α), respectively. We summarize the learning behavior when T is

changed with α and Anoise is fixed for the cases of input and output noise.

(1) αSG(T = 0, Anoise) > α. For every temperature, only the P phase exists and learning

never takes place.

(2) αSG(T = 0, Anoise) < α < α0(Anoise). For T1(α,Anoise) < T , the P phase exists and

for 0 ≤ T < T1(α,Anoise), the SG phase exists. That is, learning never takes place.

(3) α0(Anoise) < α. For TC(α,Anoise) < T , the P phase exists, for T1(α,Anoise) < T <

TC(α,Anoise), the L phase exists, for TL(α,Anoise) < T < T1(α,Anoise), the SG phase

and L phase exist, and for 0 ≤ T < TL(α,Anoise), the SG phase exists.

We defined the exponents β̄ of Rl and ql and the generalization error ϵg immediately

after learning takes place. We found that β̄R = 1/2, β̄q = 1, and β̄ϵ = 1 for the noiseless,

input noise, and output noise cases.

Next, we studied asymptotic learning behavior for large α in order to clarify whether

learning occurs under the existence of external noise. We defined the exponents β̂ of

1− Rl, 1− ql and ϵg − ϵg|R=1 for large α. We found that for any temperature, when α

becomes large, learning occurs for the noiseless case, as well as for the output noise case

with λ < 1/2 and for the input noise case with any positive τ . We obtained β̂R = β̂q = 2

and β̄ϵ = 1 for the noiseless and output noise cases and β̂R = β̂ϵ = 1/2 and β̄q = 1 for

the input noise case.

Now, let us summarize the numerical results and compare them with the theo-

retical results. We performed Markov chain Monte Carlo simulations (MCMCs) and
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exchange Monte Carlo simulations (EXMCs). For small α, by numerically estimating

the maximum value Rmax of the histogram of R1, we compared numerical results of the

α dependence of Rmax with theoretical results of R(α) and obtained consistent results.

For exponents β̄R and β̄ϵ, we also obtained consistent results between the theory and

simulations. In order to study the temperature dependences of R1 and q1, we performed

EXMCs. For the noiseless case, the numerical results confirmed the theoretical results.

For the input and output noise cases, we could not observe the SG phase numerically.

That is, when αSG(T = 0, Anoise) < α and for T < T1(α,Anoise), the SG phase was

expected theoretically, but numerically we found the L phase. In order to resolve this

disagreement, we studied the AT stabilities and free energies of the RS solutions. We

found that the free energy of the L solution is smaller than that of the SG solution for

the input noise and output noise cases. As for the AT stability, we found two cases. As

the temperature is lowered, the L solution becomes AT unstable and then the SG solu-

tion becomes AT unstable for the input and output noise cases for α = 10. In contrast,

for α = 30 for the output noise case, the SG solution first becomes AT unstable and

then the L solution becomes AT unstable as the temperature is lowered. Therefore, in

all the cases we studied, an RSB L solution is expected to appear. Next, we studied

the noise amplitude λ dependence of learning for the output noise case. We found three

solutions, i.e., two learning solutions, the L1 and L2 solutions, and the SG solution. We

numerically found that when λ is small, the L1 solution appears and when λ is large,

the L2 solution appears, and the SG solution does not appear. We also studied the AT

stabilities and free energies of these solutions. We found that these solutions are AT

stable. The free energy of the L1 solution is smallest, that of the L2 solution is middle,

and that of the SG is largest. The disagreement between the theory and simulations is

considered that the acceptance ratio of the Metropolis method is so low that the system

might be trapped to a local minimum of the free energy.

Finally, to investigate the asymptotic learning behavior, we studied the α dependence of

R1 and q1 for large α and obtained consistent results between the theory and simulations

for the exponents β̂R and β̂q.

Thus, except for the low-temperature region and small noise amplitude region, the

theoretical and numerical results agree reasonably well. From these results, we conclude

the following.

1. Learning behavior
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(1) α < αSG(T = 0, Anoise). For every temperature, only the P phase exists.

(2) αSG(T = 0, Anoise) < α < α0(Anoise). For T1(α, Tnoise) < T , the P phase exists and

for T < T1(α, Tnoise), the L phase exists.

(3) α0(Anoise) < α. For TC(α, Tnoise) < T , the P phase exists and for T < TC(α, Tnoise),

the L phase exists.

2. Effects of noise

Learning takes place even if input noise (τ > 0) or output noise (0 < λ < 1/2)

exists.

3. AT stability

The replica symmetry is broken at low temperatures.

8.2 And machine

Firstly, we summarize the theoretical result within the RS ansatz.

In the And machine, contrary to the Parity machine, we found that the critical loading

rate αC is 0 and the SG state does not exist. That is, learning takes place for any

positive α and for any temperature. Thus, in this case, we defined the exponents β̄ of

Rl and ql and the generalization error ϵg at α = 0. We found that β̄R = 1, β̄q = 2, and

β̄ϵ = 1 for the noiseless, input noise, and output noise cases. The Exponents for R and

q are different from those for the Parity machine. Regarding the asymptotic behavior,

we obtained β̂R = β̂q = 2 and β̄ϵ = 1 for the noiseless and output noise cases, and

β̂R = β̂ϵ = 1/2 and β̄q = 1 for the input noise case, as for the Parity machine.

Next, we summarize the numerical results and compare them with the theoretical re-

sults. We performed MCMCs and EXMCs and found that learning takes place for any

positive α and for any temperature. For exponents β̄R and β̄ϵ, and also for exponents

β̂R and β̂q, we obtained consistent results between the theory and simulations. In or-

der to study the temperature dependences of R1 and q1, we performed EXMCs. For

the noiseless, input noise and output noise cases, the theoretical and numerical results

agreed reasonably well except at low temperatures. We consider that replica symmetry

breaking takes place at low temperatures as in the case of the Parity machine. From

these results, we conclude the following.

1. Learning behavior

For any α > 0 and any temperature, learning takes place.

2. Effects of noise
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Learning takes place even if input noise (τ > 0) or output noise (0 < λ < 1/2)

exists.

3. Stability

The replica symmetry seems to be broken at low temperatures.

Now, let us compare our results with those obtained by previous studies. In Ref. 18,

Kabashima studied the online learning of a two-layer perceptron of the Parity machine

with non-overlapping receptive fields of K = 2. The amplitude of his example vector

was set to
√
M , the learning algorithm was the least-action algorithm (LAA), and the

output noise was studied. He found that if the noise rate λ exceeds the critical value

λc, students cannot acquire any generalization ability even in the limit α → ∞. In

Ref. 17, Schottky and Krey studied the influence of noise on multilayer perceptrons

with non-overlapping receptive fields, i.e., the tree-like architecture. They treated the

Committee machine, the Parity machine, and the And machine for input and output

noise cases adopting the Gibbs and Bayes algorithms, and studied the behaviors of

learning in the q → 1 and q → 0 limits. They found the “Aha effect”, which occurs in

the case that αC is positive. Contrary to the result of Kabashima, they did not obtain

a critical noise level. In our model, a critical noise level does not exist. The reason for

this difference seems to be the difference in the algorithms. That is, Kabashima used

the LAA algorithm and online learning, whereas Schottky and Krey and we used the

Gibbs algorithm and batch learning.
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9. Appendix A. Derivation of Free Energy f , −βf = 1
N
⟨lnZ⟩p,x,wt = αG1+

G2, of General Boolean Functions by the Replica Method

In this appendix, we calculate the partition function by the replica method and

derive the SPEs. Let us start by calculating e−βE[w,ξp],

e−βE[w,ξp] =
K∏

µ=1

e−βΘ(−σt
µσ

s
µ), (198)
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where Θ(x) is the Heaviside function,

Θ(x) =

1 for x > 0,

0 for x ≤ 0.
(199)

This is rewritten as

e−βE[w,ξp] =
K∏

µ=1

{e−β + (1− e−β)Θ(σt
µσ

s
µ)}. (200)

Defining the following quantities:

σsα
µ = Bs({sgn(hsα

lµ )}), hsα
lµ =

xµ
l ·wsα

l√
M

, (201)

dµ(ws
l ) ≡ dws

l δ((w
s
l )

2 −M), dµ(ws) ≡
K∏
l=1

dµ(ws
l ), (202)

we have

Zn =

∫ [ n∏
α=1

dµ(wsα)
]∏

µ

∏
α

{
e−β + (1− e−β)Θ

(
σt
µBs({sgn(hsα

lµ )})
)}

. (203)

Let p(σ|{ht
lµ}) be the probability that the teacher takes a value of σ. Here, ht

lµ is defined

as

ht
lµ =

xµ
l ·wt

l√
M

. (204)

The average of Zn with the probability distribution p(σ|{ht
lµ}), ⟨Zn⟩p, is expressed as

⟨Zn⟩p =
∫ [∏

α

dµ(wsα)
]∏

µ

[ ∑
σ=±1

p(σ|{ht
lµ})
]

×
∏
α

[
Tr{σα

l }

(
△̃σ

s,β({σα
l })
∏
l

Θ
(
σα
l h

sα
lµ

))]
, (205)

where we define

△σs
s

(
{σl}

)
=

1 for σs = Bs({σl}),

0 for σs = −Bs({σl}),
(206)

△̃σ

s,β({σl}) ≡ e−β + (1− e−β)△σ
s

(
{σl}

)
. (207)

Next, let us average over {xµ
l }. Since (xµ

l )
2 = M , the average over {xµ

l } for a function

g({xµ
l }), ⟨g⟩x, is

⟨g⟩x =

[∏
l,µ

1

SM

∫
dxµ

l δ((x
µ
l )

2 −M)

]
g (208)
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=

[∏
l,µ

1

SM

∫
dxµ

l

∫ i∞

−i∞

dKµl

2πi
e−Kµl{

∑
j((x

µ
lj)

2−M)}
]
g, (209)

where we define

SM =

∫
dxµ

l δ((w
sα
l )2 −M). (210)

⟨g⟩x is rewritten as

⟨g⟩x =

[∏
l,µ

1

SM

∫
dxµ

l

∫ i∞

−i∞

dKµl

2πi
e−Kµl{

∑
j((x

µ
lj)

2−M)}
∫

dht
lµδ(h

t
lµ −

wt
l · x

µ
l√

M
)

×
[∏

α

dhsα
lµ δ(h

sα
lµ − wsα

l · xµ
l√

M
)
]]
g

=

[∏
l,µ

1

SM

∫
dxµ

l

∫ i∞

−i∞

dKµl

2πi
e−Kµl{

∑
j((x

µ
lj)

2−M)}

×
∫

dht
lµ

dztlµ
2π

[∏
α

dhsα
lµ

dzsαlµ
2π

]
e
iztlµ(h

t
lµ−

wt
l ·xµ

l√
M

)+i
∑

α zsαlµ (hsα
lµ −

wsα
l ·xµ

l√
M

)

]
g.(211)

Let us define vlµ as

(vlµ)j = ztlµw
t
lj +

∑
α

zsαlµ w
sα
lj . (212)

By performing integrations over {xµ
lj}(j = 1, · · · , l), ⟨Zn⟩p,x ≡ ⟨⟨Zn⟩p⟩x is given by

⟨Zn⟩p,x = A×B, (213)

A =

∫ [∏
lα

dwsα
l δ
(
(wsα

l )2 −M
)]

×
∏
µ

[∑
σ±1

p(σ|{ht
lµ})

∏
α

(
Tr{σα

l }△̃
σ

s,β({σα
l })
)∏

l

Θ
(
σα
l h

sα
lµ

)]
, (214)

B =

∫ ∏
l,µ

dht
lµ

dztlµ
2π

∏
l,µ,α

dhsα
lµ

dzsαlµ
2π

∏
µl

[ 1

SM

∫
dKµl

2πi
eMKµl

]∏
µl

( π

Kµl

)M
2

× exp
[
i
∑
l,µ

ztlµh
t
lµ + i

∑
α

∑
l,µ

zsαlµ h
sα
lµ −

∑
l,µ

(vlµ)
2

4KµlM

]
. (215)

Firstly, we perform the following integration:∫
dxµ

l δ
(
(xµ

l )
2 −M

)
=

∫ ∞

−∞
dxµ

l

∫ i∞

−i∞

dKµl

2πi
e−Kµl

(
(xµ

l )
2−M

)

=

∫ i∞

−i∞

dKµl

2πi

(√
π

Kµl

)M

eMKµl . (216)
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The integral is evaluated at the saddle point Kµl = 1/2, and we obtain(√
π

Kµl

)M

eMKµl =
√
2π

M
e

M
2 = (

√
2πe)M = SM . (217)

Hereafter, we set Kµl =
1
2
. Thus,

B =
[∏

lµ

1

SM

(2π)
M
2 e

M
2

][∏
l,µ

∫
dht

lµ

dztlµ
2π

eiz
t
lµh

t
lµ

]
×
[ ∏
l,µ,α

∫
dhsα

lµ

dzsαlµ
2π

eiz
sα
lµ hsα

lµ

]
e−

1
2M

∑
l,µ(vlµ)

2

. (218)

We define

Rα
l =

1

M
(wsα

l ,wt
l), (219)

qαβl =
1

M
(wsα

l ,wsβ
l ). (220)

Taking the average over wt
l , (l = 1, · · · , K) we have

⟨Zn⟩p,x,wt = ⟨A B⟩wt =

∫ [∏
l,α

dRα
l

M

2π
dR̄α

l

][ ∏
l,α<β

dqαβl
M

2πi
Fαβ
l

]
eG̃1+G̃2+G̃3 ,(221)

where R̄α
l and Fαβ

l are conjugate variables to Rα
l and qαβl , respectively. Here, eG̃1 , eG̃2

and eG̃3 are expressed as

eG̃1 =
[∏

l,µ

∫
dht

lµ

dztlµ
2π

][ ∏
l,µ,α

∫
dhsα

lµ

dzsαlµ
2π

]
× exp

[∑
l,µ

{iztlµht
lµ + i

∑
α

zsαlµ h
sα
lµ }

−1

2
{(ztlµ)2 + 2ztlµ

∑
α

zsαlµ R
α
l +

∑
α

(zsαlµ )
2 + 2

∑
α<β

zsαlµ z
sβ
lµ q

αβ
l }
]

×
∏
µ

[∑
σ±1

p(σ|{ht
lµ})

∏
α

(
Tr{σα

l }

(
△̃σ

s ({σα
l })
∏
l

Θ(σα
l h

sα
lµ )

))]
, (222)

eG̃2 =

∫ ∏
lα

dwsα
l δ
(
(wsα

l )2 −M
)∏

l

dwt
lδ
(
(wt

l)
2 −M

) 1

SM

×e−i
∑

αl R̄
α
l wsα

l ·wt
l+

∑
l,α<β Fαβ

l wsα
l ·wsβ

l , (223)

G̃3 = iM
∑
lα

R̄α
l R

α
l −M

∑
l,α<β

F αβ
l qαβl . (224)

Now, let us assume the replica symmetry:

Rα
l = Rl , qαβl = ql, l = 1, · · · , K. (225)
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Performing the integration over {zsαlµ }, {ztlµ}, and {hsα
lµ }, we have

eG̃1 =

{∏
l

[
dht

lµDSlµ

√
1− ql

2π{1− ql + n(ql −R2
l )}

]
e
∑

l{−
1

2Ql
(ht

lµ)
2+

1−ql
2

nb2lµ}

×
[∑

σ±1

p(σ|{ht
lµ}){Φσ

βs({−
√
1− qlblµ})}n

]}p

, (226)

where Ql =
1−ql+n(ql−R2

l )

1−ql+nql
, Pl =

√
ql−R2

l√
[1−ql+n(ql−R2

l )](1−ql)
, blµ = Rl

1−ql+n(1−ql)
ht
lµ + PlSlµ, and

Φσ
βs({

√
1− qlblµ}) is defined as

Φσ
βs({

√
1− qlblµ}) ≡ Tr{σα

l }

(
△̃σ

s ({σα
l })
∏
l

H(
√
1− qlblµσ

α
l )

)
. (227)

Hereafter, we omit the subscript µ and write the variables as

ht
lµ → ht

l , Slµ → Sl , blµ → bl.

We change the integration variable from Sl to bl, given as

bl =
Rl

1− ql + n(ql −R2
l )
ht
l + PlSl = αlSl + βlh

t
l , (228)

where

αl = Pl , βl =
Rl

1− ql + n(ql −R2
l )
. (229)

Sl is expressed as

Sl =
1

αl

(bl − βlh
t
l). (230)

Thus, eG̃1 is rewritten as

eG̃1 =

{∏
l

[ ∫ dht
l√

2π

dbl
αl

e
− 1

2

b2l
α2
l

+Ll+n
1−ql

2
b2l

√
1− ql

2π{1− ql + n(ql −R2
l )}

×
∑
σ±1

p(σ|{ht
l}){Φσ

βs({−
√
1− qlbl})}n

]}p

, (231)

where

Ll = −1

2

ql
ql −R2

l

(ht
l)

2 +
βl

α2
l

blh
t
l = −1

2

ql
ql −R2

l

(ht
l)

2 +
1− ql
ql −R2

l

Rlblh
t
l . (232)

Setting G̃1 = pG1, we finally obtain

eG1 =
∏
l

[ ∫ dht
l√

2π

dbl
αl

e
− 1

2

b2l
α2
l

+Ll+n
1−ql

2
b2l

√
1− ql

2π{1− ql + n(ql −R2
l )}

×
∑
σ=±1

p(σ|{ht
l}){Φσ

βs({−
√

1− qlbl})}n
]
. (233)
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9.1 Input noise

An independent noise ζl is entered in the input xl to the teacher. (ζl)i is assumed

to be Gaussian with mean 0 and standard deviation τl. From Eq. (204), we have

h̃t
lµ ≡ wt

l · (x
µ
l + ζl)√
M

= ht
lµ +

wt
l · ζl√
M

. (234)

Let us define yl =
wt

l · ζl√
M

. The averages of yl and y2l are

⟨yl⟩ =
1√
M

M∑
l=1

wl,i⟨ζl,i⟩ = 0, (235)

⟨y2l ⟩ =
1

M

∑
i,j

wl,iwl,j⟨ζl,i ζl,j⟩ =
1

M

∑
i

(wl,i)
2τ 2l = τ 2l . (236)

Hereafter, we assume τl = τ . Thus, yl is a sum of many independent random variables,

and by the central limit theorem, it is a Gaussian random variable with the mean 0 and

the standard deviation τ . Its probability density function p(yl) is

p(yl) =
1√
2πτ

e−
y2l
2τ2 . (237)

The probability p(σ|{ht
l}) that the teacher’s output is σ is the probability that

B(σ1, σ2) = σ. Thus, by defining △σ
t ({σl}) as

△σ
t ({σl}) =

1 for σ = Bt({σl}),

0 for σ = −Bt({σl}),
(238)

we obtain

p(σ|{ht
l}) =

∫
dy1dy2 p(y1)p(y2)△σ

t

(
{sgn(ht

l + yl)}
)

= Tr{σl} △
σ
t ({σl})

∏
l

∫
dyl p(yl)Θ{σl(h

t
l + yl)}. (239)

Let us define xl by yl = τxl for l = 1, 2. Then, the integration with respect to xl yields

p(σ|{ht
l}) = Tr{σl} △

σ
l ({σl})

∏
l

H

(
− σl

ht
l

τ

)
. (240)

Therefore, we obtain the following result:∫
dht

l e
LlH

(
− σl

ht
l

τ

)
=

√
2π(ql −R2

l )

ql
eAlH

(
−(1− ql)Rlblσl√
(qlτ 2 + ql −R2

l )ql

)
, (241)

where we define

Al =
(1− ql)

2R2
l b

2
l

2ql(ql −R2
l )

. (242)
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Thus, we have

[
∏
l

∫
dht

le
Ll ]p(σ|{ht

l}) = Tr{σl} △
σ
l ({σl})

[∏
l

√
2π(ql −R2

l )

ql
eAlH

(
−(1− ql)Rlblσl√
(qlτ 2 + ql −R2

l )ql

)]
.(243)

Therefore, we obtain

eG1 =
∑
σ=±1

Tr{σl} △
σ
l ({σl})

∏
l

[
1− ql√

ql

∫
1√
2π

dble
− b2l

2

(1−ql)
2

ql

×H

(
−(1− ql)Rlblσl√
(qlτ 2 + ql −R2

l )ql

)]
{Φσ

βs({−
√

1− qlbl})}n. (244)

Making a variable transformation from bl to tl =
1−ql√

ql
bl yields

eG1 =
∑
σ=±1

Tr{σl} △
σ
t ({σl})

[∏
l

∫
Dtl

][∏
l

H

(
− Rlσltl√

qlτ 2 + ql −R2
l

)](
Φσ

β,s({−γltl})
)n

.(245)

From Eq. (227), we have

Φσ
βs({ζltl}) = Tr{σα

l }△̃
σ

s,β({σα
l })
∏
l

H
(
γltlσ

α
l

)
, (246)

γl =

√
ql

1− ql
. (247)

By taking the limit n → 0, Eq. (245) becomes

eG1 ≃ 1 + n
∑
σ=±1

Tr{σl} △
σ
t ({σl})

[∏
l

∫
Dtl

][∏
l

H

(
− Rlσltl√

qlτ 2 + ql −R2
l

)]
lnΦσ

β,s({−γltl}).

(248)

Therefore, from Eq. (221), ⟨Zn⟩p,x,wt is obtained as

⟨Zn⟩p,x,wt =

∫ [∏
l,µ

dRα
l

M

2π
dR̄α

l

][ ∏
l,α<β

dqαβl
M

2πi
dF̄αβ

l

]
eG̃1+G̃2+G̃3 . (249)

We evaluate the integration of Eq. (249) at the saddle point,

⟨Zn⟩ ∼ eG̃1+G̃2+G̃3 , (250)

⟨lnZ⟩ =
1

n
(G̃1 + G̃2 + G̃3). (251)

Since G̃1 = pG1, from Eq. (248), by setting t → −t, G1

n
is obtained as

G1

n
=
∑
σ=±1

Tr{σl} △
σ
t ({σl})

[∏
l

∫
Dtl

][∏
l

H

(
Rlσltl√

(1 + τ 2)ql −R2
l

)]
lnΦσ

β,s({γltl}).(252)

Next, we calculate eG̃2 . Similar to the case of Kµl, we can set Et
l = 1. We obtain

δ
(
(wsα

l )2 −M
)
=

∫ i∞

−i∞

dEα
l

4πi
e−

Eα
l
2

{(wsα
l )2−M}. (253)
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Therefore, from Eq. (223), we have

eG̃2 =

∫
[
∏
lα

dwsα
l

dEα
l

4πi
][
∏
l

dwt
l

1

4πi

1

SM

]

× exp[−1

2

∑
l

(wt
l)

2 +
M

2
K − 1

2

∑
l,α

Eα
l {(wsα

l )2 −M}

−i
∑
lα

R̄α
l w

sα
l ·wt

l +
∑
l,α<β

F αβ
l wsα

l ·wsβ
l ]. (254)

Integrating over wt
l,j, we obtain

eG̃2 = e
∑

lj G2,lj , (255)

eG̃2,lj ≡
∫
[
∏
α

dwsα
lj

dEα
l

4πi

√
2π

4πi
eLe

∑
α

1
2
Eα

l e
1
2

1

(sM)1/M
, (256)

L = −
∑
α

Eα
l

2
(wsα

lj )
2 +

∑
α<β

Fαβ
l wsα

lj w
sβ
lj − 1

2
(
∑
α

R̄α
l w

sα
lj )

2. (257)

The RS conditions are

Eα
l = El , F αβ

l = Fl , R̄α
l = R̄l, l = 1, · · · , K. (258)

Thus, we have

L = −El

2

∑
α

(wsα
lj )

2 + Fl

∑
α<β

wsα
lj w

sβ
lj − R̄2

l

2
(
∑
α

wsα
lj )

2. (259)

By integrating over wsα, we have

eG̃2,lj =

[ ∫ ∏
α

dEα
l

4πi

]√
2π

4πi

(
2π

El + Fl

)n
2

√
EL + Fl

El + R̄2 + (1− n)(Fl − R̄2
l )
e

1
2

1

(sM)1/M
.(260)

Since the right-hand side of Eq. (260) has no j dependences, we have

G̃2 =
∑
l,j

G̃2,lj = M
∑
l

G̃2,lj ≡ M
∑
l

Ĝ2,l. (261)

Thus, we obtain

eĜ2,l =

[ ∫ ∏
α

dEα
l

4πi

]√
2π

4πi

( 2π

El + Fl

)n
2

√
EL + Fl

El + R̄2 + (1− n)(Fl − R̄2
l )

× en
El
2

e
1
2

(SM)
1
M

. (262)

Since S
1
M
M =

√
2πe, evaluating Eq. (262) at the saddle point, we obtain

Ĝ2,l

n
=

1

2
{ln 2π

El + Fl

+ E] +
Fl − R̄2

l

El + Fl

} (263)

G̃2

n
= M

∑
l

Ĝ2,l

n
. (264)
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Next, we calculate G3:

G̃3 = iM
∑
lα

R̄α
l Rl −M

∑
l,α<β

F αβ
l qαβl . (265)

From the RS ansatz, we have

G̃3 = M{i
∑
l

R̄lRl +
1

2

∑
l

Flql}. (266)

We define G̃3 = MG3. Therefore, we have

⟨lnZ⟩ =
1

n
(G̃1 + G̃2 + G̃3) =

1

n
G̃, (267)

1

M
⟨lnZ⟩ =

1

nM
G̃ =

1

n
(
p

M
G1 +

∑
l

Ĝ2,l +G3). (268)

Let us define

G = G̃1 + G̃2 + G̃3. (269)

Defining N = MK and α = p
N
, we have

G

M
=

p

M
G1 +

∑
l

Ĝ2,l +G3 =
K

N
pG1 +

∑
l

Ĝ2,l +G3

= K

[
αG1 +

1

K

K∑
l=1

Ĝ2,l +
G3

K

]
(270)

G

nN
= α

G1

n
+

1

K

K∑
l=1

Ĝ2,l

n
+

1

n

G3

K
. (271)

We define

G2 =
1

K

K∑
l=1

Ĝ2,l +
G3

K
. (272)

Thus, we obtain
G1

n
and

G2

n
as

G1

n
=

[ ∫ ∏
l

Dtl

] ∑
σ=±1

Tr{σl} △
σ
t ({σl})

[∏
l

H
( Rlσltl√

ql(1 + τ 2)−R2
l

)]
× lnΦσ

β,s({γltl}), (273)

G2

n
=

1

K

K∑
l=1

1

2

(
ln

2π

El + Fl

+ El +
Fl − R̄2

l

El + Fl

)
+

1

K
(i
∑
l

R̄lRl +
∑
l

Flql
2

).(274)
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We calculate the saddle points for
G

nN
=

1

n
αG1 +

G2

n
. Using the conditions for the

saddle point of G2 with respect to El, Fl and R̄, we obtain

G2

n
=

1

2K

K∑
l

[
ln

(
2π(1− ql)

)
+ 1 +

ql −R2
l

1− ql

]
. (275)

By defining the quantities

η = 1 + τ 2, ζ̃l =
Rl√

ηql −R2
l

, X̃l = ζ̃ltl, (276)

γl =

√
ql

1− ql
, Yl = γltl, (277)

from Eq. (273) we obtain

G1

n
=

∫
[
∏
l

Dtl]
∑
σ=±1

[Tr{σl} △
σ
t ({σl})

∏
l

H(σlX̃l)] lnΦ
σ
β,s({Yl}). (278)

Φσ
β,s({Yl}) is expressed as

Φσ
β,s({Yl}) = Tr{σ′

l}△̃
σ

s,β({σ′
l})
∏
l

H(σ′
lYl). (279)

9.2 Output noise

In the output noise case, the sign of the output σ is reversed with a nonzero probabil-

ity. We assume that only the teacher suffers from output noise. Let λ be the probability

that the teacher’s output is reversed. Then, the probability that teacher’s outputs a

value of σ is

p(σ|{ht
l}) = (1− λ)△σ

t

(
{sgn(ht

l)}
)
+ λ{1−△σ

t

(
{sgn(ht

l)}
)
}

= λ+ (1− 2λ)Tr{σl} △
σ
t ({σl})

∏
l

Θ(σlh
t
l). (280)

Let us calculate eG1 in Eq. (233). We obtain∫
dht

le
LlΘ(σlh

t
l) =

√
2π(ql −R2

l )

ql
e

ql−R2
l

2ql

(
(1−ql)Rl
ql−R2

l

bl

)2

H(−σlX̃l)

=

√
2π(ql −R2

l )

ql
eAlH(−σlXl), (281)

where Al is given by Eq. (242). Therefore, we have

[
∏
l

∫
dht

le
Ll ]p(σ|{ht

l}) =

{∏
l

√
2π(ql −R2

l )

ql
eAl

}[
λ+ (1− 2λ)Tr{σl}

(
△σ

t ({σl})
∏
l

H(−σlXl)

)]
.

(282)
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As in the case with the input noise model, making a variable transformation from bl to

tl =
1− ql√

ql
bl yields

eG1 = [
∏
l

∫
Dtl]

∑
σ=±1

(
λ+ (1− 2λ)Tr{σl} △

σ
t ({σl})

∏
l

H(−σlXl)

)(
Φσ

β,s({−
√

ql
1− ql

tl})
)n

.(283)

By defining the quantities

ζl =
Rl√

ql −R2
l

, (284)

Yl = γltl , γl =

√
ql

1− ql
, (285)

Xl = ζltl follows and we have

eG1 = [
∏
l

∫
Dtl]

∑
σ=±1

{λ+ (1− 2λ)Tr{σl} △
σ
t ({σl})

∏
l

H(−σlXl)}{Φσ
β,s({−Yl})}n.(286)

By taking the limit n → 0, we obtain

G1

n
= [
∏
l

∫
Dtl]

∑
σ=±1

{λ+ (1− 2λ)Tr{σl} △
σ
t ({σl})

∏
l

H(−σlXl)} lnΦσ
β,s({−Yl}). (287)

Making a variable change from tl to −tl yields

G1

n
= [
∏

l

∫
Dtl]

∑
σ=±1{λ+ (1− 2λ)Tr{σl} △σ

t ({σl})
∏

l H(σlXl)} lnΦσ
β,s({Yl}).(288)

The expression for G2 is the same as that for the input noise model.

9.3 Noiseless case

From Eqs. (276), (277), (284) and (285), γl is the same as the input and output

noise models. ζl is obtained by setting τ = 0 in Eq. (276) for the input noise case. This

is also the same as in the output noise case. On the other hand, the expression for G1

is obtained by substituting λ = 0 in the expression for the output noise case,

G1

n
= [

∏
l

∫
Dtl]

∑
σ=±1

(
Tr{σl} △

σ
t ({σl})

∏
l

H(σlXl)

)
lnΦσ

β,s({Yl}). (289)

This is also the same as in the input noise case with η = 0. G2 is the same as that in

the input and output noise cases.

10. Appendix B. Derivation of the SPEs for Parity Machine

10.1 Input noise

Since σ = 1 for σ1 = σ2 and σ = −1 for σ1 = −σ2,
G1

n
in Eq. (278) becomes

G1

n
=

∫
Dt1Dt2{H(X̃1)H(X̃2) +H(−X̃1)H(−X̃2)} lnΦ+(Y1, Y2)
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+{H(−X̃1)H(X̃2) +H(X̃1)H(−X̃2)} lnΦ−(Y1, Y2) (290)

=

∫
Dt1Dt2[H2(X̃1, X̃2) lnΦ+(Y1, Y2) +H2(X̃1,−X̃2)] lnΦ−(Y1, Y2). (291)

Here, we define

Φ+(Y1, Y2) = Φ1
β,s(Y1, Y2) (292)

Φ−(Y1, Y2) = Φ−1
β,s(Y1, Y2), (293)

H2(x, y) = H(x)H(y) +H(−x)H(−y). (294)

The following relations hold:

H2(x, y) = H2(y, x) = H2(−x,−y), H2(x,−y) = 1−H2(x, y) = H2(−x, y). (295)

Using these relations, from Eq. (279), we obtain

Φ+(Y1, Y2) = H(Y1)H(Y2) +H(−Y1)H(−Y2) + e−β{H(Y1)H(−Y2) +H(−Y1)H(Y2)}

= H2(Y1, Y2) + e−βH2(Y1,−Y2) (296)

Φ−(Y1, Y2) = H2(−Y1, Y2) + e−βH2(Y1, Y2) = Φ+(−Y1, Y2) = Φ+(Y1,−Y2)

= 1 + e−β − Φ+(Y1, Y2). (297)

Then, G1

n
becomes

G1

n
=

∫
Dt1Dt2[H2(X̃1, X̃2) lnΦ+(Y1, Y2) +H2(X̃1,−X̃2) lnΦ+(Y1,−Y2)]. (298)

By the variable change t2 to −t2, the second term on the right-hand side of this equation

is equal to the first term. Thus, we have

G1

n
= 2

∫
Dt1Dt2H2(X̃1, X̃2) lnΦ+(Y1, Y2). (299)

G2 is given by Eq. (275). Thus, we have the following SPEs:

q2l −R2
l = 4α(1− e−β)

√
ql(1− ql)I1,l, l = 1, 2, (300)

Rl(ηql −R2
l )

3
2 = −4αηql(1− ql)I2,l, l = 1, 2. (301)

I1,1 =

∫
Dt1Dt2t1H2(X̃1, X̃2)h(Y1)Ha(Y2)

1

Φ+(Y1, Y2)
, (302)

I2,1 =

∫
Dt1Dt2t1h(X̃1)Ha(X̃2) lnΦ+(Y1, Y2), (303)

I1,2 =

∫
Dt1Dt2t2H2(X̃1, X̃2)h(Y2)Ha(Y1)

1

Φ+(Y1, Y2)
, (304)

I2,2 =

∫
Dt1Dt2t2h(X̃2)Ha(X̃1) lnΦ+(Y1, Y2). (305)
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We assume that ql = q and Rl = R (l = 1, 2). Then, we have X̃l = ζ̃tl, ζ̃ = R√
ηq−R2

, Yl =

γtl and γ =
√

q
q−1

. By exchanging integration variables t1 ↔ t2 in I1,2, we have I1,1 =

I1,2. Similarly, in I2,2, by using Φ+(Y1, Y2) = Φ+(Y2, Y1), we have

I2,2 =

∫
Dt1Dt2t2h(X̃2)Ha(X̃1) lnΦ+(Y2, Y1). (306)

By exchanging integration variables t1 ↔ t2 in I2,2, we have I2,1 = I2,2. We define

I
(i)
1 ≡ 2I1,1 = 2

∫
Dt1Dt2t1h(Y1)Ha(Y2)

H2(X̃1, X̃2)

Φ+(Y1, Y2)
, (307)

I
(i)
2 ≡ 2I2,1 = 2

∫
Dt1Dt2t1h(X̃1)Ha(X̃2) lnΦ+(Y1, Y2). (308)

Thus, from Eqs. (300) and (301), the SPEs become

q2 −R2 = 2α(1− e−β)
√
q(1− q) I

(i)
1 , (309)

R(ηq −R2)3/2 = −2αηq(1− q) I
(i)
2 . (310)

10.2 Output noise

From Eq. (278), G1

n
is

G1

n
=

∫
Dt1Dt2

{{
λ+ (1− 2λ)H2(X1, X2)

}
lnΦ+(Y1, Y2)

+
{
λ+ (1− 2λ)H2(X1,−X2)

}
lnΦ−(Y1, Y2)

}
=

∫
Dt1Dt2

{{
λ+ (1− 2λ)H2(X1, X2)

}
lnΦ+(Y1, Y2)

+
{
λ+ (1− 2λ)H2(X1,−X2)

}
lnΦ+(Y1,−Y2)

}
. (311)

Here, we use Φ−(Y1, Y2) = Φ+(Y1,−Y2). As in the input noise case, this is rewritten as

G1

n
= 2

∫
Dt1Dt2

{
λ+ (1− 2λ)H2(X1, X2)

}
lnΦ+(Y1, Y2). (312)

From Eq. (312), we have

G1

n
= 2

∫
Dt1Dt2

{
λ+ (1− 2λ)H2(X1, X2)

}
lnΦ+(Y1, Y2). (313)

We assume ql = q and Rl = R for l = 1, 2. Then, we have Xl = ζtl, ζ = R√
q−R2

, Yl = γtl

and γ =
√

q
1−q

. We define I
(o)
1 and I

(o)
2 as

I
(o)
1 = 2

∫
Dt1

∫
Dt2{λ+ (1− 2λ)H2(X1, X2)}t1

h(Y1)Ha(Y2)

Φ+(Y1, Y2)
, (314)

I
(o)
2 = 2

∫
Dt1

∫
Dt2(1− 2λ)h(X1)Ha(X2)t1 lnΦ+(Y1, Y2). (315)

67/70



J. Phys. Soc. Jpn.

The SPEs are given by

q2 −R2 = 2α(1− e−β)
√

q(1− q) I
(o)
1 , (316)

R(q −R2)3/2 = −2αq(1− q) I
(o)
2 . (317)

10.3 Noiseless case

In this case, quantities are obtained by setting τ = 0 in the expressions for the

input noise, or setting λ = 0 in the output noise. Thus, assuming ql = q and Rl = R

for l = 1, 2, we obtain

I
(n)
1 = 2

∫
Dt1

∫
Dt2H2(X1, X2)t1

h(Y1)Ha(Y2)

Φ+(Y1, Y2)
, (318)

I
(n)
2 = 2

∫
Dt1

∫
Dt2h(X1)Ha(X2)t1 lnΦ+(Y1, Y2), (319)

q2 −R2 = 2α(1− e−β)
√
q(1− q) I

(n)
1 , (320)

R(q −R2)3/2 = −2αq(1− q) I
(n)
2 . (321)

11. Appendix C. Derivation of the SPEs for the And Machine

In this Appendix, we derive the SPEs for the And machine. We assume ql = q and

Rl = R for l = 1, 2. X̃l, Xl and Yl are the same as those for the Parity machine.

11.1 Input noise

G1

n
in Eq. (278) is

G1

n
=

∫
Dt1Dt2{H(X̃1)H(X̃2) lnΦ+(Y1, Y2)

+(H(X̃1)H(−X̃2) +H(−X̃1)H(X̃2) +H(−X̃1)H(−X̃2)) lnΦ−(Y1, Y2)}

=

∫
Dt1Dt2{H(X̃1)H(X̃2) lnΦ+(Y1, Y2) + Ĥ(X̃1, X̃2) lnΦ−(Y1, Y2)}, (322)

where Ĥ(X̃1, X̃2) = 1−H(X̃1)H(X̃2). From Eq. (279), we obtain

Φ+(Y1, Y2) = H(Y1)H(Y2) + e−βĤ(Y1, Y2)

= e−β + (1− e−β)H(Y1)H(Y2) = Φ+(Y2, Y1), (323)

Φ−(Y1, Y2) = Ĥ(Y1, Y2) + e−βH(Y1)H(Y2) = 1 + e−β − Φ+(Y1, Y2). (324)

Thus, G1

n
is

G1

n
=

∫
Dt1Dt2{H(X̃1)H(X̃2) lnΦ+(Y1, Y2) + Ĥ(X̃1, X̃2) lnΦ−(Y1, Y2)}. (325)
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G2 is

G2

n
=

1

2

(
ln(2π(1− q)) +

1−R2

1− q

)
. (326)

The SPEs become

q2 −R2 = α(1− e−β)
√
q(1− q)J

(i)
1 , (327)

R(ηq −R2)
3
2 = −αηq(1− q)J

(i)
2 , (328)

J
(i)
1 = −2

∫
Dt1Dt2t1h(Y1)H(Y2)

1

Φ+(Y1, Y2)Φ−(Y1, Y2)

×{Φ+(Y1, Y2)− (1 + e−β)H(X̃1)H(X̃2)}, (329)

J
(i)
2 = −2

∫
Dt1Dt2h(X̃1)H(X̃2)t1 ln

(
Φ−(Y1, Y2)

Φ+(Y1, Y2)

)
. (330)

11.2 Output noise

Similar to the input noise case, from Eq. (278), we have

G1

n
=

∫
Dt1Dt2

[{
λ+ (1− 2λ)H(X1)H(X2)

}
lnΦ+(Y1, Y2)

+
{
λ+ (1− 2λ)Ĥ(X1, X2)

}
lnΦ−(Y1, Y2)

]
. (331)

(332)

The SPEs are

q2 −R2 = α(1− e−β)
√

q(1− q)J
(o)
1 , (333)

R(q −R2)
3
2 = −αq(1− q)J

(o)
2 , (334)

J
(o)
1 = 2

∫
Dt1Dt2t1h(Y1)H(Y2)

1

Φ+(Y1, Y2)Φ−(Y1, Y2)

×[Φ+(Y1, Y2)− (1 + e−β){λ+ (1− 2λ)H(X1)H(X2)], (335)

J
(o)
2 = −2(1− 2λ)

∫
Dt1Dt2h(X1)H(X2)t1 ln

(
Φ−(Y1, Y2)

Φ+(Y1, Y2)

)
. (336)

11.3 Noiseless case

Since the quantities for the noiseless case are obtained by substituting τ = 0 in the

expressions for the input noise or substituting λ = 0 in the expressions for the output

noise, we have

J
(n)
1 = −2

∫
Dt1Dt2t1h(Y1)H(Y2)

1

Φ+(Y1, Y2)Φ−(Y1, Y2)

×[Φ+(Y1, Y2)− (1 + e−β)H(X1)H(X2)], (337)
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J
(n)
2 = −2

∫
Dt1Dt2h(X1)H(X2)t1 ln

(
Φ−(Y1, Y2)

Φ+(Y1, Y2)

)
. (338)

The SPEs are

q2 −R2 = α(1− e−β)
√
q(1− q)J

(n)
1 , (339)

R(q −R2)
3
2 = −αq(1− q)J

(n)
2 . (340)
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