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We investigate the supervised batch learning of Boolean functions expressed by a two-
layer perceptron with a tree-like structure. We adopt continuous weights (spherical
model) and the Gibbs algorithm. We study the Parity and And machines and two
types of noise, input and output noise, together with the noiseless case. We assume
that only the teacher suffers from noise. By using the replica method, we derive the
saddle point equations for order parameters under the replica symmetric RS ansatz. We
study the critical value a¢ of the loading rate a below which only the para phase exists
for cases with and without noise. We find that a¢ is nonzero for the Parity machine,
while it is zero for the And machine. We derive the exponent /3 of order parameters
expressed as (a— ac)g when « is near to a¢. Furthermore, in the Parity machine, when
noise exists, we find a spin glass solution, in which the overlap between the teacher
and student vectors is zero but that between student vectors is nonzero. We perform
Markov chain Monte Carlo simulations by simulated annealing and also by exchange
Monte Carlo simulations in both machines. In the Parity machine, we study the de
Almeida-Thouless stability, and by comparing theoretical and numerical results, we
find that there exist parameter regions where the RS solution is unstable, and that
the spin glass solution is metastable or unstable. We also study asymptotic learning
behavior for large o and derive the exponents B of order parameters expressed as a B
when « is large in both machines. By simulated annealing simulations, we confirm these
results and conclude that learning takes place for the input noise case with any noise
amplitude and for the output noise case when the probability that the teacher’s output

is reversed is less than one-half.
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1. Introduction

Previously, we studied the supervised learning of a simple perceptron with continu-
ous weights (spherical model) and with discrete weights (Ising perceptron) by using the
Gibbs algorithm under the existence of external noise.! ® In particular, we studied the
learning curve for noiseless, output noise, and input noise cases, and found that learning
behaviors depend on the type of noise. That is, for the spherical model, we found that
there exists an optimal temperature at which the generalization error is a minimum only
for the output noise model.>* On the other hand, for the Ising perceptron, in which the
synaptic weights are discrete and take values of £1, there exists perfect learning, such
that a student vector completely coincides with a teacher vector at a finite number of
examples, only for the output noise model.?6

When the number of layers increases, what kinds of phenomena take place is an
interesting theme to be studied. In addition, it is very important to study two-layer
perceptrons. One of the reasons is that if the number of neurons in the hidden units
is sufficiently large, they can solve any classification problem such as the exclusive
OR (XOR) problem, which cannot be solved by a simple perceptron as is well known.
Another reason is technological: multilayer perceptrons are applied to many practical
problems such as pattern recognition,” combinatorial optimization,® and so forth. There
have been many studies on the learning of multilayer networks.” 1> Among other types of
learning, we focus on learning of Boolean functions expressed by a two-layer perceptron
with a tree-like architecture. This model has been studied by using the Gibbs and Bayes
algorithms with and without noise by Schottky etal..!%17 By defining a as p/N, where
p and N are the numbers of examples and input synapses, respectively, it has been
reported that the critical value ac above which learning takes place is nonzero for the
Parity machine but is 0 for the And machine. In ref. 15, the authors call the phenomenon
of the nonzero ac the “Aha effect”, which is obtained with and without noise. On the
other hand, ac is always 0 for learning in simple perceptrons.!® The phenomenon of
the nonzero a¢ has also been reported for the online learning of the Parity machine in
the two-layer perceptron for output noise by Kabashima.!® Furthermore, it has been
reported that learning itself does not take place when the noise amplitude is large.'®

In this paper, we assume that only the teacher suffers from noise for simplicity. We
use the replica method and perform Markov chain Monte Carlo simulations (MCMCs)
together with exchange Monte Carlo simulations (EXMCs). We assume the replica

*E-mail address: uezu@cc.nara-wu.ac.jp
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symmetric (RS) ansatz. We study the Parity machine and the AND machine. In the
Parity machine, firstly, we focus on whether a¢ is 0 or not and the behaviors of the
learning curve when learning begins. Secondly, we study asymptotic learning behavior
for large «. Thirdly, we study the de Almeida-Thouless (AT) stabilities'® of the RS
solutions in the cases that the temperature is low and the noise amplitude is large.
In both cases, the spin glass solution exists theoretically, but numerically it does not
appear. In the AND machine, we study learning behaviors for a ~ 0 and for large «,
theoretically and numerically.

The structure of this paper is as follows. In sect. 2, we formulate the problem by
the replica method and describe the free energy for general Boolean functions and
for input and output noise together with the noiseless case. In sect. 3, we study the
Parity machine. We derive the saddle point equations (SPEs) and expressions for the
generalization error, and investigate the critical ac and the behaviors of the learning
curve for o around a, and we study asymptotic learning behavior for large a. In sect.
4, we study the AT stability. In sect. 5, we show the results of numerical simulations
and compare them with the theoretical results for the Parity machine. For the And
machine, theoretical analysis is given in sect. 6, and numerical and theoretical results
are compared in sect. 7. Section 8 contains a summary and discussion. In Appendix A,
we describe the details of the derivation of the free energy of general Boolean functions
for input and output noise together with the noiseless case. In Appendices B and C, we

derive SPEs for the Parity and And machines, respectively.

2. Formulation

We study a two-layer perceptron with a tree-like structure. Input layers consist of
K units, and each unit has M input points (see Fig. 1). We assume that both the
teacher and student have the same architecture but only the teacher suffers from noise.
We denote the teacher vector by w! = (w!,w}, -, wh ) and the student vector by
w® = (wf,ws, -, ws). Common examples are given to both the teacher and student.
The pth example is denoted by a# = (xf, @b, -+ , @’ ). Vectors wi, w;, and &' are all

M-dimensional and their norms are set to v M.

w; - (wlt17w;2,,wltM), ’wﬂ - \/M, l: 1,2,...7K, (].)
w; - (wfl,wa,...,'LUfM), |’U)f| - VM, l: 172,...,K7 (2)
) = (zf, xhy, .. xy), 2| =VM, 1=1,2,.. K. (3)
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Fig. 1. Schematic figure of tree-like structure of two-layer perceptron.

The outputs to an example vector x# = {x]'} by the teacher and student are

ot = sn ({20, (@)

UZ = Bt(aiu, . ,0'5(’“), (5)

ol = sgn(%), (6)

0p = Bs(0] 45,0k ) (7)

Here, (z,w) denotes the inner product and Bi(o;...,0x) and Bg(oy,...,0k) are
Boolean functions, that is, mappings from o = (0, -+ ,0k) to o, where o; = +1

and o0 = £1. sgn(z) is defined as

1 for z > 0,
sgn(z) =
-1  for z <0.

2.1 Learning algorithm

Let us define the training set &, by the p-set of (x*, O'Z),

fp:{(x“,aZ),u: L. 7p}' (8)
When the training set £, is given, we define the energy of a student w as the number of

discrepancies between the output UZ by the teacher and the output o, by the student,

Ew.&] = Y 6(-0,07). (9)
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where O(u) is the Heaviside function, i.e., ©(u) = 1(sgn(u) + 1). The learning strategy

we adopt is the Gibbs algorithm, in which a synaptic weight w is selected with a

, where [ is the inverse temperature, § = %

probability proportional to e~ BEIW &)

The algorithm in the limit 7" — 40 corresponds to the minimum-error algorithm, in
which only the synaptic weights with minimum energies are selected. Therefore, the
temperature represents the measure of tolerance in selecting synaptic weights. Let us
define the overlap {R;} between the weights of a student and the teacher, and the

overlap {¢;} between the weights of students as

1

RZZM(W}:,’UJ?), lzlv"'7K7 (10)
1

ql:M(wf,wf), l=1,--- K. (11)

When R; = 1, the teacher and student vectors in the [th unit coincide, and if it is 0,
they are orthogonal. We define the loading rate o as

S
KM’

The generalization error ¢, is defined as the probability that the outputs by the teacher

a (12)

and student to a new example are different. That is,
¢g = (0(=0°0"))pa, (13)

where (-),, implies the average over the teacher’s output and examples. We study
the learning curve ¢,(a) and the o dependences of overlaps R and ¢, and study the

temperature dependences of these quantities.

2.2 Replica analysis
We derive the SPEs by the replica method. The partition function Z is expressed

as

Z = / {f[dwﬂ [f[(ﬂ(w‘f)Z—M) e PEW* &) (14)

Here, dw] = dwy, ...dwyj,;. We denote the probability that the teacher output is o by
P(0). We assume the self-averaging of the logarithm of the partition function, that is,
In Z is equal to the value averaged over teacher’s output, examples, and teacher’s weight

vectors.

InZ=(In2), .t
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In order to calculate In Z, we use the replica method. We prepare n sets of students
{w]“}az1, with the same set of the training set &, and the same teacher vector w’

Thus, from Eq. (14), we have
K

2 = [ [T owie] [TITTotwi ~ 3o Smwme g
a =1 a =1
We define
(6% 1 S
R} = M(wl Jw), 1=1,--- K, (16)
(0% 1 S S
qlﬂ - M(wl 7’wlﬁ)7 =1 K. (17>
By using the standard recipe, under the ansatz of the replica symmetry, i.e., R, = R}
and ¢ = qf‘ﬂ (l=1,--- ,K), (InZ), ..t is expressed as
1 1 1
N(ln Z>p7m7wt = ﬁaGl + EGQ (18)

Therefore, the free energy per input unit F'/N is given by
1 1
FIN = —-T(nZ),,wt/N =-T—(aG; + —G>). (19)
n n

Irrespective of the type of Boolean function and noise, % is expressed as

D N =

where E} is introduced to express the normalization of students’ vectors, and F} and R,

are conjugate variables to ¢; and R, respectively. See Appendix A for the derivation.
By eliminating conjugate variables using their saddle point conditions, the expression

for GGy is further rewritten as
K
Go 1 R2
— = In( 27(1 — +1 + —_— 21
n 2K — [ n( m( ql)) 1 —q (21)
Below, for the input and output noise and noiseless cases, we give expressions for G
for general Boolean functions. The detail of the derivation of these expressions is also

given in Appendix A.

2.2.1 Input noise
We assume that an independent noise ¢; enters each example x; input to the teacher
and that ((;); is Gaussian noise with mean 0 and standard deviation 7;. The probability

p(o|{h{}) that the teacher’s output is o is the probability that o = B({o;}). Here,
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ht = \/Lﬁ(wf, ;). This probability is expressed as

plol(h)) = Triny 27 (o) [T (- orlh), )

where we define
H@) = [ dt = / D, (23)
DE= dt h(t), hit) = —= 5 (24)

AT(or)) = 1 foro= Bt({ol} , (25)
t 0 foro=—B({o1}).

G

1.
— is expressed as
n

% = [T 3 o o [T () sy, o

o==+1
where
@@mm:ﬂw(&ﬂwDHme) (21)
!
= Gty, Yi=yits, mi = G = T m=1+1 (28)
I ) 1 _ l \/m? 1>

1 for o= B,({0;}),
A7({or}) = (ten) (29)
0 foro=-B,({a}),

Noporh) =e?+ (1 —e?) A7 ({o7}). (30)
Note that ®3 ({Y;}) is common for the noiseless and input and output noise cases but

differs according to the Boolean function B,({c;}), that is, it differs for the Parity and

And machines.

2.2.2  Qutput noise

In the output noise case, the sign of the output o is reversed with a nonzero probabil-
ity. We assume that only the teacher suffers from output noise. Let A be the probability
that the teacher’s output is reversed. Then, the probability that teacher’s output is o

18

pll{hi}) = A+ (1 =2NTrgy &7 ({or}) [T O(euhi). (31)
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1.
— is expressed as
n

S [[TIon) Xt =21y 27 (o) [T # (o) s, (031,
l o==%1 l
(32
X1 =Qty, Vi =mt,m = & NG il (33)

1_Ql _\/ql—Rlz‘
3 ,({Y1}) is given by Eq. (27). Note that the expression for ¢ is different from that for

the input noise case.

2.3 Noiseless case
Quantities for the noiseless case are obtained by substituting 7, = 0 in the input
noise model or by substituting A = 0 in the output noise model. Thus, —Lig
n

S S (e &7 (D [T [ Du X} e (i), (34)
qi R,

1—q’ “= Va— R

In this paper, we study the case that B, = B, = B; thus, A7 = Af.

Xi=qty, Yi=yt, 1=

In the next section, we study the Parity machine.

3. Parity Machine
Hereafter, we consider the case of two units, that is K = 2. The output of the Parity

machine is 1 if the outputs of the two units are the same and -1 otherwise, that is,
B(Ul,O'Q) = 0109. (36)

Below, we show the SPEs. Detailed derivations are given in Appendix B.

3.1 Input noise
We study the case of 77 = 7. As shown later, our numerical results obtained by

MCMCs show the relations ¢ = ¢ and ; = R for [ = 1,2. Thus, we assume these

relations. We obtain
el
n

where Hy(X1, Xo) = H(X1)H(X2) + H(—X1)H(—X2) and ¢, (V1,Y2) = &L ({V)}) =

Hy(Y1,Ys) + e PHy(Y1, —Y3). Then, the SPEs are given by

= Q/DtlthHz(Xl,Xz)1nq’+(Y1,Yz)> (37)

- R = 2a(1—e?)/q(l—q) 1, (38)
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R(nq — R2)3/2 = —2amq(1—q) I,

where H,(X5)

3.2 Output noise
e

n

18
G

n
The SPEs are

q p R 2
<tl7 ’Ytl,”y— 7C: 777:1+7'7
V1—g¢q Vng — R?

H2<X17 XQ)

_ oon, =2 / Dt Dt h(Y;) (1) g G2,
+ 1,12

= 2, = 2/DtlDtQtlh(Xl)Ha(f(g)1n<I>+(Y1,Y2),

= H(Xy) — H(—X3).

Q/DtlDtQ{)\ + (1 — 2/\)H2<X1,X2)} In (D+(}/1,Yé)

q2—R2 1—6 Va1 —q) ](O),
R(q — R*)*? —2aq(1 — q) I}”,
h(Y1)H,(Y2)
(o) 1 2
2 [ Dt; | D 1— 20\ Ho (X1, Xo) Mty ——2 02/
I / t1/ ta{ A+ ( A)Hy (X1, Xo) (V. Ys)
I = 2(1—2/\)/Dt1/Dt2h(X1)Ha(X2)t1 In®,(Y1,Ys),
R q
X =Cliy, (= ——, Yi=rt, y=,/——.
1= ¢ty € g T 14

3.8 Noiseless case

In this case, the SPEs are given by substituting 7 = 0 in the expressions for the

input noise model or substituting A = 0 in the expressions for the output noise model.

¢ - R = 20(1-e¢")/g1—q) I},
R(g—R)*?* = —2aq(1—q) I}”,
n h(Y1)H,(Y2)
o /Dtl/DtgHg Xi Kot
Iz(n) = Z/Dtl/DtQh(Xl)Ha(X2)t1 In®, (Y3,Y3),

l—gq

R
X, = (ty, C:ﬁ7 Y=t v=

9/70
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3.4 Generalization error
Here, we give the expressions for the generalization error for the Parity machine.

(1) Noiseless case

12 -
€¢g = 5~ sin 'Rysin™' R,. (54)

(2) Input noise
1 2 R
€g = = — —sin H——)sin~

2w V1472

1, R
(;7Téi;;§)- (55)

(3) Output noise

1
€ = 35— (1-— 2/\)§ sin™! Ry sin~! Ry. (56)

3.5 Behavior for small o and critical value ag

In the Parity machine, there exists nonzero critical values of «, a¢ and ar,, above
which learning takes place when T' is fixed. In order to obtain the formulae for ac and
ay,, assuming ¢ ~ 0 and R ~ 0, we expand [; and I, in terms of ¢ and R. In the course
of the study, we note that there are two cases of ¢ and C. In the case of ¢ ~ O(1) or
¢~ O(1), which occurs in the learning state, ac is defined. On the other hand, in the
case of ¢ = 0 and ¢ = 0, which occurs in the spin glass state, ay, is defined. Firstly, we

study the former case.

3.5.1 Learning state
(i) Noiseless case
Let us calculate the expansions of [1(n) [Eq. (51)] and Iz(n) [Eq. (52)] with respect to 7.

Using the expansions

B 1 -3 2a 2 ’72 2 2 4
QL (Y1,Ys) = 5(1"‘6 )1+—’Y t1lo 1—E(t1+t2>+0(7) ) (57)
Hy(Ys) ~ \/2_7t2+3 o0, (58)
we have
m _ Ay ¢ _’7_23+2C2) ¢ 1 9 2\—3/2 4
™ = 7T2(1+€_ﬁ><\/ﬁ<2(1 N ety e av’ (1+°)72+ 0(v%)
n day® ¢
= M (1w omn),
3+ ¢
l2(C2):W,
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where

e —1
eB4+1

a =

When ( is not a small quantity, we obtain

T

h(¢%) =

We have the relations

4y

C2

(14 eB) 1+
2(3 4+ 2¢%) 1
3(1+¢?)

(1= +06).

+ (1 + ?)&

q2_R2 _ 72_<2
q(1—q) (L+~2)(1+¢?)’

r-)/

Rlo-R)7 ¢ _
(1 —q)7? (14¢2)?
Substituting these relations into the SPEs (49) and (50) yields

r—y

(1+2)(1+vy)

where we define x = (2 and y = ~2.

1

R

q

2

_ R2)3/2 C

80 2 (1 - ll(x)y) + 0y,

™ 14z

“a(1- e + 062

R and q are

™

_ \/L
(1+2)(1+y)’
_y
1+y

From Eq. (68), the solution y exists for o > oz(cn ). We obtain

Defining ¢ = %= (n) , the SPEs (67)

r—y

(1+x)(1+y)

We expand z and y by e.

1

and (68) are rewritten as

(1+4¢)

1+
1+5<1—& >+O@%.

= Xotxie+---,

= ptyeto

11/70

(1) + 06

(69)

(70)

(71)



J. Phys. Soc. Jpn.

From Eq. (73), we obtain

- + O(y?). 76
Thus,
1
Yo =0, y1 = RES) (77)
From Eq. (72), we obtain
Lo
= . 78
% Jfoll (ZE()) — (1 —f- IL‘O) ( )
From this, we obtain
(g +1)(axg — (1 —a)) = 0. (79)
Since z = (% > 0, we have
1l—a 2
= = . 80
o a ef —1 (80)
Thus, we obtain
6(ef —1) A«
~ 1
R \/(365 D@+ D\ ol (81)
3(e? +1) Aa
g ~ et oe (2)
3ef —1 ozé)
1 2 _, 1 12 ef —1 Aa
G T T BRI 1) o0 (83)

where Ao = a — oz(cn ). Since R is positive, we call this a learning (L) solution. The
exponents 3 of R and ¢, are defined by R o (Aa)Pr, g x (Aa)P, and Ae = €g|Re0— €4 X
(Aa)Pe, respectively. Thus, we obtain S = 1/2, 8, = 1, and . = 1.

(i) Input noise

Expressions IV and I} are obtained from I™™ and I\ by replacing ¢ with . We have
the relations

¢* — R? nT+(n—1)ry —y

—_—— = — ) (84)
Wal—q) 1+3)(1+y)
R(ng — R*)*? PV
iV Ak A/ £ (85)
q(1 —q)y (1+2)
where Z = (2 and y = 72. By similar analysis to the noiseless case, we obtain
2
(in) m
= = 86
%¢ 7780/7 ( )
Yo = 07 (87)
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Ny
T W (To) — (11 7o)
- 1 —na
T = n(l4+a)—1
The condition that Z, is non-negative is
B < ln<2 1—27—2).

In this case, we have an L solution as

3 Aa

R ~ 2 .

\/ﬁ\/Qeﬂ—l—l\/agn)’

9(e’ +1) Aa
q 0.8 1 (i)’

B in

9ef + 1 aé)

1 2R 1 24 1 A«
€g ¥ ———— = —
g 2 w2y ) 7T29€B+1oz8n)

Thus, we obtain g = 1/2, 3, =1, and 3. = 1.
(iii) Output noise

(88)

(89)

(90)

(92)

(93)

I and IS, respectively given by Eqs. (46) and (47), are expressed by using those for

the noiseless case as
¥ = M+ -201",

5 = (-2,

n=2 [ Do [ DR,

D, (Y1,Y5)

J1 is estimated as

3 8a 1
P+ e ) (11727

We set = ¢? and y = 7? and obtain

J1 = —v

2

NOR m
© 8a(l — 2\)’
Yo = Oa
3(1 —2)\) (e +1)
h (3_20N)ef — (11 2))
2(1—Au+e®>
Zo .

el —1
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Note that the solution can be negative. The condition that the solution is non-negative
is
1—A

< 1
o= n—

(102)

In this case, we obtain an L solution as

N 6(1 — (e +1)) A«
o= \/(3 “oe (120 00 (103)

31 =2\ (e +1) Aa

~ ~ 104
1 Y= 32206 — (1420 4@ (104)
1 2 1 1-2\ 121-Xe#+1) Aa
~ ——(1-2)=5R*~ - — 1
€ > ! Sl = - G —arange 1)

Thus, we obtain Bz = 1/2, Bq =1, and B, = 1. Now, let us consider the latter case.

3.5.2 Spin glass state

In this subsection, we study the case that the positivity condition for zy or zq is

broken. We define fsq as In(24f ®) in the input noise case and In(1=2 ~2) in the output

noise case. We define A, s as

n for input noise,
Anoise = (106>
> for output noise.

Bsq is characterized by

Apoise + 1
Bsc  — “noise |~ 107
c Anoise - 17 ( )
that is,
Bsa
e -1 1
a<ﬁSG) B eﬁsG + ]- B Anoise‘ (108>

For 8 > Bsq, we found two kinds of solutions, in one solution R > 0 and ¢ > 0, and in
the other solution R = 0 and ¢ > 0. The former we call the L solution. Since R = 0
and ¢ # 0, we call the latter a spin glass (SG) solution. The SG solution satisfies

72 = 2a(l—e P, (109)

/Dtl/Dtgtl o0 Yh%). (110)

q does not depend on A, is. The critical value of «, asg, above which the SG solution

exists for any f is

asg = @ ——5- (111)
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asg also does not depend on A,i.. The L solution bifurcates from the SG solution, and

the critical capacity oy, above which the L solution exists for 5 > fsq is determined by
1

1
_ -8
T~ al—e)5h(), (112)
4 B
Anoise = ﬂ_12( ) (113)
) =2 / Dt / Dty OLH ) (114)
Dy (vt vta)

h(y) = / Dt / Diatits ln<<I>+(fyt1,fyt2)>. (115)

For noisy cases, a. is expressed as a. = aApoisesa. From Eq. (108), ac(Tsa, Ancise) =
asc(Tsc), where Tsq = 1/8sg. Furthermore, it is easily proved that as ¢ tends to
0, ar(T, Ancise) tends to ac(T, Anoise) With fixed A,pise. This happens at T = Tyg.
That is, ac(Tsq, Ancise) = aL(T5G, Anoise) = @sc(Tsg) holds.In Fig. 2, we display the T
dependences of ar,, ac, and agg with A, fixed. P, L, and SG denote the para, learning,
ans spin glass states, respectively. From the figure, there seems to be a parameter region
in which only the SG solution exists. However, numerical results do not exhibit the SG
state as shown in the next section. In order to find appropriate solutions, we study the

AT stability of the solutions in sect. 4.

(a) (b)

70 . . . . 500 ; . -
‘ 400 |-}
50 |- S . ‘

‘x |
a0 SG L L 300 1 |

V‘l v//,/ '\\
30 (1 g

20 |
' 100 |

- 7“;4’/_/;__/;:;;_‘,
T I— P
0 1 1 1 0 — 1 1
0 1 2 3 4 0 1 2 3
T T
Fig. 2. T dependences of ac(T), ar(T), and asg(T). Solid curve: ac, dashed curve: «p,, dashed

dotted curve: agg. P: para state, L: learning state, SG: spin glass state. (a) Apoise = 2.25,7 = ‘f, A=

TF)S’ (b) Anoise = 57=2 A= %
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3.6 Learning behavior for large «

In this subsection, we study R and ¢ when a tends to co. From numerical simula-
tions, we observed that R and ¢ tend to 1 as a — oo. Thus, we define AR =1— R
and Ag = 1 — ¢ and study the asymptotic forms of AR and Agq. The strategy used to
derive the asymptotic behavior is to evaluate I; and I, by performing variable trans-
formations. For the noiseless and output noise cases, we set t; = uy /v for both I; and
I5. For the input noise case, for I; we set t; = uy /v, and for I, we set t; = uy /v and

Iy = uy /7 and perform integration by parts.

3.6.1 Noiseless case

For R~ 1and g ~ 1,7 > 1 and ¢ > 1 follow. We define y = %. We obtain
consistent results when x is assumed to tend to a constant as o — oo. We estimate / fn)
and I as

202

n 2Q°
LY~ \/Q—gz(x,ﬁ), (117)
nlx.B) = /D u/X) (118)
. h
w00) = o [ Pt G =0 =) [ Dugd o (o
where H(u) = H(—u) + e ?H(u). From the SPEs, we obtain

Aqg ~ qo 2 (120)

AR =~ Rya™? (121)

2
where ¢y = (\/ 27TX3/(492)) and Ry =¢qo — (1 — e_ﬁ)qu/le/\/Qﬂ. X is determined by
2Ry = (1+x%)q- (122)

To derive these results, go > 0 is necessary, which is satisfied. We define the exponents
B as AR oz_BR, Aq x a‘B‘I, and Ae = €; — €5|p=1 X a~P . Since Ae ~ %\/ﬁx/AR,
B. = BR/Q follows. Thus, we have g = Bq =2and . = 1.
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3.6.2 Input noise
In this case, 5 = W_LRQ — ﬁ as a — oo. We define y = 4 /”%:?2, which tends

to 0o as o — 0o0. We obtain

0= g, (123)
Lo~ - zﬁ;l(l—e[f)é(ﬁ), (124)

1 _ h(u)
93(8) = — [ Duu— =(1—e?) Du———— >0, (125)

/ H(u) / (ﬁ(u)>
g(B) = /DuleN*(“l’“Q)_(l_eﬁ)}é“(ul)H“(“” >0, (126)

(‘I’+(U17U2))
Thus, we obtain

Ag >~ qol, (127)
AR ~ Rya 2 (128)

where ¢y = (1 — 1)7r2/<2(1 - e‘ﬂ)g?) and Ry = (1 — e‘ﬂ)qg’mgg/\/%r. To derive these
results, g > 0 and g3 > 0 are necessary, which are satisfied. We note that ¢o > 0 for
1 > 1 and that learning occurs for any 7 > 0, irrespective of the noise amplitude. Ae is

~ —4 in—1 L 1 3 — 3 — 3 —
evaluated as Ae ~ Y =y sin (\/ﬁAR). Thus, we obtain S = . = 1/2 and 5, = 1.

3.6.3 Qutput noise
As in the noiseless case, we assume that y tends to a constant as a — oo. We

estimate [ fo) and [2(0) as

10~ —3%@1<x,6>, (129)
LY~ —%gxx,ﬁ), (130)
a8 = =Ags(x.B)+ (1 —2N)gi(x, B), (131)
G0 8) = (1-2N)g(x.B) (132)

Equations (129) and (130) are similar to Egs. (116) and (117). g, is positive for A < 1/2.
Thus, we obtain the same asymptotic forms of Ag and AR as in the noiseless case, and

qo and Ry are obtained by replacing ¢g; and go with ¢; and g, in the expressions for g
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and Ry in the noiseless case.
Aq ~ qoa_27 (133)
AR ~ Rya % (134)

Ace is evaluated as Ae ~ (1 — 2/\)%\/5\/ AR. Thus, we obtain By = Bq =2and §. = 1.
From these results, we conclude that learning always occurs in the noiseless case,

for 7 > 0 in the input noise case, and for A < 1/2 in the output noise case for large .

4. AT Stability

As shown later, there are discrepancies between the theoretical and numerical results
in the input and output noise cases for small T" with fixed A,us or for large Ajoise
with fixed T'. In these regions, the SG solution was expected to exist but it was not
found numerically. In order to resolve the discrepancies, we study the AT stability. As
usual, we denote the eigenvalues of the Hessian matrix as \; and X, i = 1,2,3. ¢ = 3
corresponds to the replicon mode. We assume that R, = R and ¢ = ¢ for [ = 1, 2.
We found that A\; = Ay and A} = A,. By using the standard recipe, we calculate these
eigenvalues for general Boolean functions. Below, we give the formulae for R = R; and

g=q(l=1,---,K) for simplicity.

4.1 Input noise case

In the input noise case, we obtain the following formulae:

AN, = /HDtl D ST Xi A, (135)

1- q o=%1
AsN, = /HDtl > sT{xhB, (136)
o=%1
S7(X1,X5) = Trpey A7 (o) [[ H(oX), (137)
l
S R
Xl = Cth C =

Vg - R
A = (F+@2)(2s@r), (135)

B = (z?+<a>2>7 (139)
5 = h(¥i) —— o= Tr oy AL (oD [ H(oxYa)]on, (140)

70 1
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2 = —mﬂm}&iﬁ({ak})HH<akYk>am|so<am>|,
K7 ({%})
(A e
Y, =ty = —T _H@) _ _ h(z) 142
l Y, Y 1— q? 90(37) H(l’) H(l’)7 ( )
KT (V) = Tregdl({o[[HoxDlotp(o). (143)

We define the following quantities to evaluate the AT stability:

A1 = 20&)\1)\/1 — 1, (144)

The condition that a solution is stable is that both A; and Aj are negative. For the

Parity machine with K = 2, we explicitly obtain the following:

Tr{gk}AzﬁH(O'mYm)Ul

®,(Y1,Y3)

Tri) <e’3 +(1—eP) ANG ({ak})> H(omYm)o

(1= e ) Te(y A75 ({or ) H(omYm)on

(1 —eoH,(Y,,), m #1, (146)
—%(1 YR YioHa (V) m 1. (147)
%gw({tk}k#), (148)
— —e_ﬁ —h(YE)Yl o m
(1 )%,S({Yk}) H,(Y,,), m#1, (149)
h(Y7)?

_ MR sy i

RGNS )(H“<Ym>>

< [YVio®, (V) — (1 — ¢ ?) Ha(Yo) (YD)

< [Vio®5 (i) — 31— e ) Hu (Vo) bVl m £1,

(150)

hYD® ey ’
CROAS )(H“(Y’”))

< [Yio®5 ({¥i}) — (1 — e ) Ho (Y)Y m £ 1.
(151)

7, ({¥i}) = ¢ ¥ + (1 — e P) Hy(¥3, 0Ys). (152)
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The condition that a solution is stable is that both A; and A3 are negative.

4.2 Output noise case

In the output noise case, Try,,y A7 ({07}) 1, H(0:X;) and X; should be replaced by
A (1 =2N)Try A7 ({o}) [, H(o X)) and X; = (t = \/%tl, respectively. Thus,
for K = 2, we obtain the results for the output noise case by replacing S7 (X7, Xs) and
X, with S7(X1, X)) = A+ (1 — 20\)Hy(X1,0X5) and X, respectively.

5. Numerical Results for Parity Machine

To begin with, we study learning behaviors for small a. First, we study the «
dependences of R; for T" = 1. We performed MCMCs using the simulated annealing
method.

Here, we explain the numerical method of MCMCs for Figs. 1-9. The same method
is used unless otherwise stated. Starting from § = 0.1, when the system reached its
equilibrium,  was increased in steps of 0.1 up to 1. We adopted 100 samples. For each
sample, after 100 Monte Carlo sweeps (MC sweeps), we started taking thermal averages.
Here, one MC sweep corresponds to M x K updates. From 100 MC sweeps, the running
average values of R; were calculated every 10 MC sweeps. After 150 MC sweeps, we
started checking the convergence. If the difference between the average of Ry up to k
MC sweeps and that up to k£ + 10 MC sweeps was less than 0.001, we considered that
the system had reached its equilibrium.

We performed simulations for several values of M, e. g., M = 10,20, and 30 for the
noiseless, input noise, and output noise cases, and found that the results for M = 20
and 30 are almost the same. Furthermore, we found that the simulation results for R;
and Ry are almost the same. Therefore, below we display the results of Ry for M > 20.
We set parameters so that eyin[= €,(R = 1)] is 5/18 for noisy cases if not otherwise
specified. That is, for the input noise 7 = 1/ v/3 and the output noise \ = 5/18. In
Figs. 3-5, we display the o dependences of R, and the generalization error ¢, for the
noiseless, input noise, and output noise cases, respectively.

First of all, we note that the error bars are larger for the output noise case than
for the noiseless and input noise cases. This is because the “strength” of noise A ise
is 9/4 for the output noise, while it is 0 and 4/3 for the noiseless and output noise
cases, respectively. We note that for large «, the theoretical and numerical results agree

reasonably well. However, for small a;, where learning does not take place, the simulation
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Fig. 3. o dependences of R; and the generalization error €, for noiseless case. Curves: RS solutions,
symbols: MCMCs. M = 20, T' = 1. Averages are taken from 100 samples. Vertical lines are error bars.
Annealing schedule: § =0.1,0.2,---,1.0. (a) Rq, (b) €.
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Fig. 4. o dependences of R; and the generalization error €, for case of input noise. Curves: RS
solutions, symbols: MCMCs. M = 20, T = 1. Input: 7 = 1/v/3. (a) Ry, (b) €.
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Fig. 5. o dependences of R; and the generalization error ¢, for case of output noise. Curves: RS
solutions, symbols: MCMCs. M =20, T =1. A =5/18. (a) Ry, (b) €.
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results differ from theoretical values. The numerical data are all positive, whereas they
are theoretically expected to be 0. . This is because we numerically calculated the
absolute value of Ry, |R;|, since the system has reflectional symmetry. That is, the
output o is the same for {w,;} and {—w;}. In order to investigate the value of a¢, we
calculated the histograms of R; at small values of « (see Fig. 6). We observe that the
value of R; that gives the maximum frequency, R.y, changes from 0 to nonzero values
as « increases. In Fig. 7, we display the a dependences of R,.. and the theoretical
results of Ry(«). This confirms the existence of the nonzero ac, although there still
exists a difference between the numerical and theoretical results. We consider that this
is a finite size effect. In Figs. 8 and 9, we display the In(Aa) dependences of In Ry, and
In Ae for a > ac, respectively. Here, Aa = a — a¢ and Ae = €;|r—o — €,. Dotted lines
denote the theoretical exponents 3z = 1/2 and 3. = 1. Numerical data are scattered

but consistent with the theoretical data.

(@ o O © @

Fig. 6. Histograms of Ry observed by MCMCs. M = 20, number of samples = 1000,7 = 1. (a)-(d):
Noiseless, ac = 2.66. (a) a =2, (b) a =2.5, (¢) a =3, (d) a = 4. (e)-(h): Input noise, ac = 3.56,7 =
1/v3. (e) a = 3.5, (f) a = 4, (g) @ = 5, (h) a = 6. (i)-(1): Output noise, ac = 6.01,\ = 5/18. (i)
a=5 G a=6,(k) a=8,(1) a=14.
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Fig. 7. « dependences of Ry,,x for noiseless, input noise and output noise cases.
Curves: RS solutions, symbols: MCMCs. M = 20, T = 1. €pnin = 5/18 for noisy case. (a) Noiseless, (b)
input noise, 7 = 1/4/3, (c) output noise, A = 5/18.
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Fig. 8. In A« dependences of In Ry« for noiseless, input noise, and output noise cases. Ao = a—ac.
Curves: RS solutions, symbols: MCMCs, dashed lines: theoretical value Bz = 0.5. M = 20, T =

1, €min = 5/18. (a) Noiseless, (b) input noise, 7 = 1/4/3, (c) output noise, A = 5/18.
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Fig. 9. InAa dependences of In Ae for noiseless, input noise, and output noise cases. Ao = a —
ac, A€ = €4| p—o—€4. Curves: RS solutions, symbols: MCMCs. M = 20, T' = 1. Dashed lines: theoretical

value B, = 1. (a) Noiseless, (b) input noise, 7 = 1/+/3, (c) output noise, A\ = 5/18.
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Next, we study the temperature dependences of order parameters by performing
EXMCs. In the EXMCs, for example, we prepared an odd number of temperatures,
Ty, 15, -+, Topvq. Every five MC sweeps, we exchanged temperatures 77 and 15, T3 and
Ty, -+, Tor 1 and Ty, or Ty and T3, Ty and T5, - - -, Top, and Ty, 1. At each temperature,
we calculated the averages of R; and ¢, after a transient of 10* MC sweeps. From 10*
MC sweeps to 5 x 10* or 10> MC sweeps, we took data every 100 MC sweeps, and
calculated the averages. We took the sample average for 100 samples. We use the same
method in Fig. 10-13 unless otherwise stated. In Fig. 10, we display the theoretical and
numerical results for the noiseless case for & = 10. The numerical results confirm the
validity of the theoretical results, at least for T' < 3.5. We confirmed that both results
agree for all temperatures when a = 30 as long as learning takes place. However, there
exists disagreement between the theoretical and numerical results in the paramagnetic
region of T' > 4 when o = 10. That is, the numerical values of R, are positive at high
temperatures despite the theoretical prediction of zero. The reason for this is that we
took the average of the absolute value of Ry, |R;|. In Fig. 11, we display the results
for the input noise case with 7 = \/75 for @« = 10 and those for the output noise case
with A = % for « = 10 and 30 in Figs. 12 and 13. The values of 7 and A correspond to
Apoise = 2.25. As is seen in Figs. 11, 12 and 13, in addition to the paramagnetic region,
there exists disagreement between theoretical and numerical results in the SG region
in both the input and output noise cases. That is, we numerically obtained R; > 0 in
the regions where the SG was expected theoretically for noisy cases. The discrepancy
between numerical and theoretical results in the low-temperature region suggests that
replica symmetry breaking (RSB) takes place at low temperatures as in the case of the

learning of one-layer perceptrons with spherical weights.4

24/70



J. Phys. Soc. Jpn.

1.2 T T T

0}

q1

0 05 1 15

2

12

Fig. 10. T dependences of R; and ¢ for noiseless case.

Curves: RS solutions, symbols: EXMCs.

M = 20. Averages are taken from 100 samples. Vertical lines are error bars. (a) R, (b) ¢; for o = 10.
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Fig. 11. T dependences of Ry and ¢; for input noise. Curves: RS solutions, symbols: EXMCs. M =
20. 7 = /52, Apoise = 2.25. (a) Ry, (b) ¢ for a = 10.
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Fig. 12. T dependences of Ry and ¢; for output noise. Curves: RS solutions, symbols: EXMCs.

A =5/18, Anoise = 2.25. (a) R, (b) ¢1 for « =10, M = 30.
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Fig. 13. T dependences of R; and ¢; for output noise. Curves: RS solutions, symbols: EXMCs.
A =5/18, Anoise = 2.25. (a) R, (b) ¢1 for a =30, M = 20.
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To resolve the discrepancy, we study the AT stability. We display A;, Az, and the free
energy per input in Figs. 14-16 for the input noise case and in Figs. 17-22 for the output
noise case. The free energy of the L solution is lower than that of the SG solution for all
cases. That is, the SG solution is metastable even if it is AT stable. As the temperature
is lowered, the L solution becomes AT unstable and then the SG solution becomes AT
unstable in the input noise and output noise cases for a = 10. In contrast, for a = 30
in the case of output noise, the SG solution first becomes AT unstable and then the
L solution becomes unstable as the temperature is lowered. Thus, in all the cases we
studied, an RSB L solution is expected to appear. Therefore, in learning under the

existence of noise, we conclude that learning takes place even in the limit of 7" — 0.

10 T T T T 40 T T T T T

0 1 30 B
-10 B 20 B

A1 A3
-20 1 10 + B
-30 B 0 4
40 L L .10 I I L L
0 T 15 2 25 0 0.5 1 T 15

Fig. 14. Temperature dependences of A; and Aj for case of input noise. 7 = v/5/2,a = 10. Solid

curves: L solution, dashed curvesd SG solution, dotted lines: zero line. (a) Ay, (b) As.

27/70

2.5



J. Phys. Soc. Jpn.

0.2
0.15

0.1

A3 oos

-0.05

-0.1

-0.15

-0.2
04 041 042 043 044 045 046 047 048 049 05

Fig. 15. Temperature dependences of Az [Enlargement of Fig. 13(b)] for case of input noise. 7 =

V5/2,a = 10.
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Fig. 16. Temperature dependences of free energy per input for case of input noise. 7 = v/5/2. Solid

curve: L solution, dashed curve: SG solution. o = 10.
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Fig. 17. Temperature dependences of A; and Aj for case of output noise. A = 5/18, & = 10. Solid

curves: L solution, dashed curves: SG solution, dotted lines: zero line. (a) Ay, (b) As.
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Fig. 18. Temperature dependences of A3 for case of output noise [Enlargement of Fig. 16(b)]. A =
5/18,c = 10. As.
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Fig. 19. Temperature dependences of free energy per input. A = 5/18, T = 1. Solid curve: L solution,

dashed curve: SG solution. o = 10.
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Fig. 20. Temperature dependences of A; and Az for case of output noise. A = 5/18,a« = 30. Solid

curves: L solution, dashed curves: SG solution, dotted lines: zero line. (a) Ay, (b) As.
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Fig. 22. Temperature dependences of free energy per input. A = 5/18, T = 1. Solid curve: L solution,

dashed curve: SG solution. o = 30.

The value of A,se = 2.25 that we studied is rather small. Let us study the A, e
dependences of learning. In Fig. 23, we display the o dependences of R, and ¢, for a
large value of noise, A = 0.4, and in Fig. 24, the \ dependences of R, and ¢; for a = 35
for several temperatures in the output noise case. From Fig. 23, it seems that as «
increases, although the distributions of R; and ¢; become broad, learning does not take
place for A = 0.4. This is more clearly observed in Fig. 24. In these figures, we took
the sample averages not only changing the initial conditions of the student but also the
examples and teacher’s outputs. If we fix the examples and the teacher’s output, we

obtain the results shown in Fig. 25.
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« dependences of histograms of Ry and ¢; obtained by MCMCs for case of output noise.

A = 0.4, M = 30, number of samples = 1000. Annealing schedule: 5 = 0.1,0.2, - - - ,0.5. The convergence
condition is d, = 107°. Solid line: T' = 10, dashed line: T = 5, dotted line: T = 2. Acceptance ratios
at T =2:38% (o= 25),35% (a = 35),24% (o = 45),19% (v = 55). (a)-(d): Ry, (e)-(h): ¢1. (a), (e):
a =25, (b), (f): a =35, (c), (g): a =45, (d), (h): o = 55.
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Fig. 24. X dependences of histograms of R; and g; obtained by MCMCs for case of output noise.

a = 35, M = 30, number of samples = 1000. Annealing schedule: § = 0.1,0.2, - -- ,1.0. The convergence
condition is d. = 107°. Solid lines: T' = 10, dashed lines: T = 2, dotted lines: T = 1. Acceptance ratios
at T=1:56% (A=0.1),6.0% (A =0.2),5.4% (A =0.3),4.5% (A = 0.4). (a)-(d): Ry, (e)-(h): ¢1. (a),
(e): A=0.1, (b), (f): A=0.2, (¢), (g): A=0.3, (d), (h): A=04.

Fig. 25.

Histograms of R1, Ra,q1 and g2 at 100000 MCS for case of output noise. Number of initial

conditions is 100x2. Annealing schedule: 5 = 0.1,0.2,--- ,1.0. Solid lines: T" = 10, dashed lines: T = 2,
dotted lines: T'=1. A = 0.4, = 25, M = 30. (a) Ry, (b) Re, (¢) q1, (d) 2.

We can observe the peak at ¢ ~ 1 and ¢o ~ 1 for T' = 1. Next, we display the

theoretical and numerical results in Fig. 26 for the output noise case. We found that

there are three non-trivial solutions, the 1st L solution (L;), the 2nd L solution (Ls),

and the SG solution. We denote the L; solution as the solution that bifurcates from the

SG solution and the Ly solution as the solution that bifurcates from the para solution.

We next study the AT stability and the free energy. The results are shown in Figs. 27

and 28, respectively. From these figures, we note that the L;, Lo, and SG solutions are

stable but the free energy of the Ly solution is lower than that of the L; solution and

the SG solution has the largest free energy. However, as is seen from Fig. 26, although
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the Ly solution agrees with the simulation results at higher A, at lower A the L; solution
agrees with the simulation results. Therefore, here, there appears to be disagreement
between the theoretical and numerical results. We consider the reason for this as follows.
As written in the caption of Fig. 25, the acceptance ratio of the Metropolis method is
only about 5 percent. This value is too low to reach the equilibrium and the system
might be trapped to a local minimum of the free energy.

Aside from this disagreement, we conclude that learning takes place for the input noise
case with any noise amplitude and for the output noise case when the probability that
the teacher’s output is reversed is less than one-half.

Now, let us study the asymptotic behavior of learning as a — oo. In Figs. 29-34, we
display the results obtained by MCMCs for the noiseless, input noise, and output noise
cases. The method of MCMC:s is the same as before. We display the a dependences of R,
and ¢; and the In(a) dependences of In ARy and In Ag; for o € [25,50] in the noiseless
case and for o € [100, 200] in the noisy cases. Here, AR; = 1— Ry and Ag; = 1—¢;. The

method used is simulated annealing with a mall a. The numerical results are consistent

with the theoretically obtained exponents BR and Bq, as is seen from Figs. 26, 28, and

30.

[ S

08
]
q1

04

0.2

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4

Fig. 26. X dependences of R; and ¢; for case of output noise. Curves: RS solutions, solid curve:
L; solution, dashed curve: Lo solution, dotted curve: SG solution. Symbols: MCMCs, M = 40, T =
1,a = 25. Averages are taken from 100 samples. Vertical lines are error bars. Annealing schedule:
8=0.1,0.2,---,1.0. (a) Ry, (b) ¢1-
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Fig. 27. X dependences of A; and Aj for case of output noise. &« = 25. Curves: RS solutions, solid

curve: L; solution, dashed curve: Lg solution, dotted curve: SG solution. (a) Ay, (b) As.
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Fig. 28. ) dependence of free energy per input for case of output noise. a = 25. Curves: RS solution,

solid curve: Ly solution, dashed curve: Lo solution, dotted curve: SG solution.
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Next, we study
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q1
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Fig. 29. « dependences of R; and ¢; for noiseless case. Curves: RS solutions, symbols: MCMCs.

M =20, T = 1. Averages are taken from 100 samples. Vertical lines are error bars. Annealing schedule:

8=0.1,0.2,---,1.0. (a) Ry, (b) q1.

Ino

-10

15

25 3 3.5
Ina

Fig. 30. Ina dependences of In AR; and In Ag; for noiseless case. Curves: RS solutions, symbols:
MCMCs. M = 20, T = 1. Dashed lines denote theoretical values of exponents, BR = Q,Bq = 2. (a)

In ARy, (b) InAg;.

6. And Machine

Next, we study the And machine. As in the case of the Parity machine, we consider

two units, that is K = 2. The output by the And machine is 1 if outputs by two units

are 1, and -1 otherwise. In the below, we show the SPEs. The derivations are given in

Appendix C. As in the Parity machine, we assume R, = R and ¢ = ¢ for [ = 1,2.

X, XY, 7,5 and ( are the same as those for the Parity machine.

36,70




J. Phys. Soc. Jpn.
(a) (b)
0994 T T T T T T 1 T T T T T
0992 | ]
0.99 | 0995
0.988 f .
0.986
Rio.984 [ (1 0.985
0982 ff 1 g
0.98 ft
0.98 i
0.978 g 0075 |
0.976 i
0974 1 1 1 1 1 097 L 1 1 1 1 1
100 120 140 160 180 200 100 120 140 160 180 200
[0 (6%
Fig. 31. « dependences of Ry and ¢ for case of input noise. Curves: RS solutions, symbols: MCMCs.
M =20,T=1,7=1/v3. (a) Ry, (b) q1.
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Fig. 32. Inadependences of In ARy and In Ag; for case of input noise. Curves: RS solutions, symbols:
MCMCs. M = 20, T = 1. Dashed lines denote theoretical values of exponents, Bz = 1/2,Bq =1. (a)
In ARy, (b) InAg;.
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Fig. 33. « dependences of R; and ¢; for case of output noise. Curves: RS solutions, symbols:

MCMCs. M =20, T =1,A=5/18. (a) Ry, (b) ¢1.
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Fig. 34. Ina dependences of In AR; and In Ag; for case of output noise. Curves: RS solutions,
symbols: MCMCs. M = 20, T = 1. Dashed lines denote theoretical values of exponents, BR =2, Bq =2
(a) InARy, (b) InAgs.

6.1 Input noise

— = /DtlDtQ{H(Xl)H(XQ)m O, (V1,Ys) + H(Xy, X5) In®_(Y1,Y3)},  (153)
where @, (Y7,Y5) = Hy(Y1,Ys) + e PH(YL,Y,) = e + (1 -
e NH(Y)H(Ya), _(Y1,Ys) = 1+ — 0, (V1,Y2), and H(Y;,Ys) = 1 — H(Y))H(Y3).

G2 g
n

Gy 1 1—-R?
7f§<ln(2ﬂ'(1—q))+ . ). (154)
The SPEs are given by
¢-R = a(l-e?)/ql-q)J, (155)
Ring— R = —anq(l—q)J5 (156)
. 1
JY = —Q/DtDtthY H(Y:
: N R AL NN D)
x{®,(V1,Ys) — (14 e ") H(X1)H(Xy)}, (157)
. 8 - d_(Y1,Ys)
i) o N 1,42
JY = 2/Dt1Dt2h(X1)H(X2)t1 1n<—q)+(yhy2>). (158)
6.2 Qutput noise
% is
G
71 = /Dt1Dt2 [{/\ + (1 =20 H(X1)H(X2)} In @4 (V1,Y5)
+{A+0 —2)\)fI(X1,X2)}1n<P_(Y1,Y2)] (159)
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The SPEs are

F-R = ol-e )/l -qJ?, (160)
R(g—RY): = —aﬂl—QLﬂw (161)
1
Jo = —2/DtDtthY H(Y:
! WDt (Y H ) g va)
X[@4(Y1,Ya) — (1+ e )N+ (1 —20)H(X))H(X)], (162)
o o O_(Y1,Y2)
6.3 Noiseless case
The SPEs are
P —R = a(l—e?)Jql—q)J", (164)
R(g—R?: = —ag(l—q)J", (165)
1
Jm = —2/DtDtthY H(Y:
! 1Dt (Y1) H( 2)<1>+(Y1,Y2)<I>_(Y1,Y2)
X[ (Y1, Ys) — (1+ e ) H(X1)H(Xa)), (166)
N d_(Y1,Ys)
J® = —Z/DtDthX Hth(—’). 167
2 1 2(1)(2)1n<1>+(Y1,Y2) ( )

6.4 Generalization error

Here, we give the expressions for the generalization error for the And machine.

(1) Noiseless

€g =

1
<sm1 Ry +sin! R2> — —sin"! Ry sin”! Ry. (168)

1
47 272

| w

(2) Input noise
3 1 -1 < Rl > .1 RQ 1 -1 Rl -1 R2
€, = ———|sin — ) 4sin” (—) | — =—=sin" (—)sin” " (—[169
¢ T8 47r< Vi (7)) g () sin™ (7 160)

(3) Output noise

3 N 1-=2\, . _ -
€g = §+Z_ y (sin™' Ry + sin! Ry)
1—2X\ . -
— 57 sin 'Rysin™! Ry. (170)

6.5 Behavior for a < 1
We obtain consistent results for ¢ = O(1) and ¢ = O(1).
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6.5.1 Input noise

Let us estimate K fi) . We estimate &, and ®_ as follows:

1—e P
D, (V,Y,) = —ﬁ+1——ﬁHth=b1—(—t+t+O?,
A0K) = e (L e HGRH ) =1 = S 0t 4ta)] + O
1
b=+ 3e7), (172)
-3 (1—e?) 3
O (Y1,Ys) = 1+4+e 7 =0, (yty,t2) = [l + ——=——=(vt1 +7t2)] + O(y°), (173)
2v/2mc
1
c= 1(3 +e7 ), (174)
q)*(leaYv?) 3
In———= = A+ B0t t 1
nq) (Y7, Ya) + Byt +7t2) + O(7°), (175)
c 1—-e®) 1 1
A=In-, B= 176
nf. B=t G+ (176)
Therefore, we have
~ By 1
J = — — + O(P). 177
2 \/%(1_’_(2)5 (7 ) ( )
Substituting this into Eq. (156), we have
B
~ =R 178
\/271'?7& 0t (178)
1+§

where Ry = \/5%. From ( = and defining ¢y = RO, we have

ng—R?2

q = oo’ (179)

The exponents 3 are defined as R o a%, ¢ x ae, and Ae = €9l R=0 — €4 X o a for small
a. Since A€ is expressed as A we obtain Sz = f.. Thus, we obtain g = . = 1

and B3, = 2.

6_2f,

6.5.2 Output noise

Using the estimate of JQ(i), in Eq. (177), we have
By(1 —2)\) 1

gl _ + O, 180
2 \/ﬁ (1 + CQ)% (7 ) ( )
Substituting this into Eq. (161) yields

B(1 -2\

R ~ Qa = Rya, (181)
V2T

where R 173\) From ¢ = \/ﬁ?, we have

q ~ qo? (182)
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where ¢y = IJEQCQ R2. Ac is expressed as Ae ~ %R, and we obtain Sz = . = 1 and

B, =2.

6.5.8 Noiseless case

In this case, setting n = 1 in Eq. (178) or A = 0 in Eq. (181), we have

B
R ~ —a, 183
o (183)
q ~ qo. (184)

A€ ~ iﬂR, and we have fp = 3. = 1 and j3, = 2.

6.6 Asymptotic behavior for a > 1.

Now, let us study the asymptotic learning behavior. Using the same strategy as for
the Parity machine, we derive the asymptotic forms for Ag =1— ¢ and AR =1— R.
Note that the SPEs are obtained by replacing [ l(a) with Jl(a) for [ = 1,2, and replacing
2a with « in the SPEs for the Parity machine.

6.6.1 Noiseless case

We assume that x tends to a finite value as for the Parity machine. We obtain the

following results:

2

SO —%zl(x,m, (185)
2

o~ 2200, (136)

Lhix,B) = —%(/ Duuﬁ(l_u) + (1+65)/DuuM), (187)

L(x:B) = g B). (188)
Ae is expressed as Ae ~ ‘/?5\/ AR. Since [y > 0, we obtain the same results as for the

Parity machine, BR = Bq =2 and ,@6 =1

6.6.2 Input noise

We obtain the following results:

J = Q; 15 (8), (189)
JO —%{1)2(1—6—5)5(@), (190)
3(8) = g3(8), (191)

41/70



J. Phys. Soc. Jpn.

I(B) = /Dum )(> 0), (192)
c(n) = % - %COS 1(%) (193)

Ac is expressed as Ae ~ 5 ﬁ(l + 2sin™" 2 )AR Since I3 > 0 and [ > 0, we obtain
the same results as for the Parity machlne, BR = 66 =1/2 and ,Bq =1.

6.6.3 Qutput noise

We obtain the following results:

© . 2@
S~ ~an Li(x, B), (194)

© . 2Q2
LwB) = L(,B)+(1+e% /Duu “/X)u) (196)
b(x.8) = (1—2)\g(x,H). (197)

Ace is expressed as Ae ~ (1 — 2)\)‘/75\/ AR. If A < 1/2, I > 0 follows. Thus, we obtain

the same results as for the Parity machine, B R = Bq =2 and BE =1.

7. Numerical results for And Machine

For both the input and output noise models, we set €y, = 13/72. Thus, 7 =1/ V3
and A = 13/72. The methods used for the numerical simulations are similar to those in
the case of the Parity machine. First, we study the o dependences of R; for T'= 1. The
results for M = 20 and 30 are almost the same. Thus, we show the results for M = 20
below. Furthermore, we found that the simulation results for R, and R, are almost
the same. Therefore, we display results for only R;. In Figs. 35 - 37, we display the
a dependences of Ry and the generalization error €, for the noiseless, input noise, and
output noise cases, respectively. We note that for the entire range of «, theoretical and
numerical results agree reasonably well. In order to study the exponents 3 for R; and €95
we display the In o dependences of In R; and In Ae in Figs. 38 and 39, respectively. Here,
A€ = €4|gr=o—€,. We also display the theoretical values of Br and B, by dashed lines. The
numerical and theoretical results agree reasonably well. Next, we study the temperature
dependences of the order parameters. We performed EXMCs by the same procedure as
for the Parity machine. In Figs. 40 -42, we display numerical and theoretical results for

the noiseless, input noise, and output noise cases. We take the sample average for 100
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samples. For the noiseless case, as is seen from Fig. 36, the numerical results confirm the
theoretical ones at all temperatures we studied. For the input noise case shown in Fig.
37, we also find that the numerical results and theoretical ones agree reasonably well
at all temperatures we studied except for very low temperatures. On the other hand,
as seen from Fig. 38, for the output noise case, the numerical results do not agree very
well at low temperatures, although they agree reasonably well at high temperatures.
From these results, as for the Parity machine, it seems that RSB takes place at low

temperatures.
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Rl 69
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Fig. 35. « dependences of R; and generalization error €4 for noiseless case. M = 20, T = 1. Anneal-
ing schedule: 8 = 0.1,0.2,---,1.0. Curves: RS solutions, symbols: MCMCs. M =20, T = 1. (a) Ry,

(b) €.
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Fig. 36. o dependencesof R; and generalization error €, for case of input noise. Curves: RS solutions,
symbols: MCMCs. M =20, T =1. 7 =1/V3 (a) Ry, (b) ¢,.
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Fig. 37. « dependences of R; and generalization error ¢, for case of output noise. Curves: RS
solutions, symbols: MCMCs. M =20, T =1. A =13/72. (a) R, (b) €.
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Fig. 38. Ina dependences of In R; for noiseless, input noise, and output noise cases. Curves: RS

solutions, symbols: MCMCs. M = 20, T' = 1. Dashed lines: theoretical value Sz = 1. (a) Noiseless, (b)
input noise, 7 = 1/4/3, (c) output noise, A = 13/72.
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Fig. 39. Ina dependences of In(Ae) for noiseless, input noise, and output noise cases. Curves: RS

solutions, symbols: MCMCs. M = 20, T = 1. Dashed lines: theoretical value 3. = 1. (a) Noiseless, (b)
input noise, 7 = 1/4/3, (c) output noise, A = 13/72.

1
Ina

44/70



J. Phys. Soc. Jpn.

12 T T T T T 12 T T T T T

1k 4
0.8 B
0.6

Looa} 1 el

0.2 B 0.2 B

ol . ol .
0.2 ! ! ! ! ! 02 ! ! ! ! !

0 0.5 1 T15 2 25 0 0.5 1 Tl.5 2 25
(c) (d)

12 T T T T T 12 T T T T T

1 W T |
N | N W
0.6 B 0.6 - B

Ry ¢

04 B 04 B
0.2 B 0.2 1

ol . ol -
0.2 ! ! ! ! ! 0.2 ! ! ! ! !

0 0.5 1 Tl.5 2 25 0 0.5 1 Tl.5 2 25

Fig. 40. T dependences of R; and ¢ for noiseless case. Curves: RS solutions, symbols: EXMCs.
M =20. (a) Ry, (b) ¢1 for @« =10, (c) Ry, (d) ¢ for a = 20.

45/70



J. Phys. Soc. Jpn.

12 T T T T T 1.2 T T T T

02| E 02|
o R o
0.2 Il Il Il Il Il 0.2 Il Il Il Il Il
0 0.5 1 Tl 5 2 25 0 0.5 1 T1.5 2 25
(c) (d)
12 T T T T T 12 T T T T T
1r B 1R
. W 08 L
0.6 B 0.6
Ry G
04 B 04
0.2 B 0.2
0 - 0
_02 1 1 1 1 1 >02 1 1 1 1 1
0 0.5 1 Tl.5 2 2.5 0 0.5 1 Tl.5 2 25

Fig. 41. T dependences of R; and ¢; for input noise. Curves: RS solutions, symbols: EXMCs. M =

20. Input: 7 = 1/+/3. (a) Ry, (b) ¢1 for a = 10, (c) Ry, (d) 1 for a = 20.
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Finally, we study the asymptotic behavior of learning as o — oco. In Figs. 39-44, we
display the results obtained by MCMCs for the noiseless, input noise, and output noise
cases. We display the o dependences of Ry and ¢; and the In(«) dependences of In AR,
and In Ag; for a € [25,100] in the noiseless case and for a € [25,200] in the noisy cases.
The method used is simulated annealing and is the same as that in the Parity machine.
The numerical results are consistent with the theoretically obtained exponents B r and

Bq, as is seen from Figs. 40, 42, and 44.
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Fig. 43. « dependences of R; and ¢; for noiseless case. Curves: RS solutions, symbols: MCMCs.
M =20, T = 1. Averages are taken from 100 samples. Vertical lines are error bars. Annealing schedule:
ﬁ = 0.1, 0.27 e, 1.0. (a) R1, (b) qi1-
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Fig. 44. Ina dependences of In AR; and In Ag; for noiseless case. Curves: RS solutions, symbols:

MCMCs. M = 20, T = 1. Dashed lines denote theoretical values of exponents, BR = 2,Bq = 2. (a)
In ARy, (b) InAg;.
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Fig. 45. « dependences of Ry and ¢; for input noise. Curves: RS solutions, symbols: MCMCs.
M =20,T=1,7=1/v3. (a) Ry, (b) q1.
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Fig. 46. Ina dependences of InAR; and InAg; for input noise. Curves: RS solutions, symbols:
MCMCs. M = 20, T = 1. Dashed lines denote theoretical values of exponents, Bz = 1/2,Bq =1. (a)
In ARy, (b) InAg;.
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Fig. 47. « dependences of R; and ¢; for output noise. Curves: RS solutions, symbols: MCMCs.
M =20,T=1,A=5/18. (a) Ry, (b) ¢1.
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Fig. 48. Ina dependences of In AR; and In Ag; for output noise. Curves: RS solutions, symbols:
MCMCs. M = 20, T = 1. Dashed lines denote theoretical values of exponents, BR = 2,3,1 = 2. (a)
In ARl, (b) In Aql.

8. Summary and Discussion

In this paper, we studied the learning of Boolean functions expressed by a two-layer
perceptron with and without external noise for small and large loading rates a.. In order
to make the analysis easier, we studied a tree-like architecture composed of two units.
As the learning algorithm, we adopted the Gibbs algorithm. We assumed that both the
teacher and students are expressed by two M-dimensional vectors with norm /M. By
using the replica method, we derived the saddle point equations for order parameters R,
and ¢ (I = 1,2), where R, is the overlap between the teacher and student and ¢ is the
overlap between students for unit /. We studied the input and output noise cases. In the
input noise case, an independent Gaussian noise with mean 0 and standard deviation
7 was entered in each example input to the teacher. In the output noise case, the sign

of the teacher’s output was reversed with probability A.

8.1 Parily machine

Firstly, we summarize the theoretical results within the RS ansatz.
We assumed R, = Ry and ¢; = ¢o, which were confirmed by numerical simulations. We
theoretically found three phases, para (P), learning (L), and spin glass (SG) phases.
(1) P phase. R, = ¢, = 0, that is, learning does not take place.
(2) L phase. R; > 0 and ¢; > 0, that is, learning takes place.
(3) SG phase. R, = 0 and ¢; > 0. Learning does not take place but the average of each

component of student vectors is not zero but random. This phase appears only for

noisy cases.
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For the noiseless case, we defined the critical loading rate ozén) above which the L phase
appears from the P phase when the temperature is fixed. For the noisy cases, we defined
the noise amplitude A, ise a8 Anoise = ﬁ for the output noise case and Apgjee = 1+ 72
for the input noise case. Furthermore, we defined three critical capacities, ay,, ac, and
asga, and one critical temperature, Tsg = 1/8sa. Tsq is a function of Ajgise. ¢ is defined
for T' > Tsq, above which the L phase exists. agg is defined for any temperature, and
above which the SG phase exists. oy, is defined for T' < Tsq, above which the L phase
exists. ar, and a¢ are functions of T" and A, s, Whereas agg depends only on T'. We
sometimes denoted ag, and ac by ar (T, Aneise) and ac(T, Anoise), respectively, in order
to explicitly express the dependences on T and Apgiee. At T = Tsq, o, ac and asg
coincide. We define ag(Apoise) = @, = a¢ = asg. Since ar,, ac, and agg are increasing
functions as long as they are defined with fixed A, s, we define their inverse functions
T (o), Te(), and Ti(«), respectively. We summarize the learning behavior when 7' is

changed with a and A, . is fixed for the cases of input and output noise.

(1) asg(T =0, Apeise) > «. For every temperature, only the P phase exists and learning

never takes place.

(2) asg(T =0, Apoise) < @ < ag(Apoise). For Ti(a, Anoise) < T, the P phase exists and
for 0 < T < Ti(e, Apoise), the SG phase exists. That is, learning never takes place.

(3) ap(Anoise) < . For To(ar, Apoise) < T', the P phase exists, for T7(a, Apoise) < T’ <
Te(a, Apoise), the L phase exists, for Ty (o, Anoise) < T < T3 (v, Apoise), the SG phase
and L phase exist, and for 0 < T < TL(«, Apoise), the SG phase exists.

We defined the exponents 3 of R; and ¢; and the generalization error €4 immediately
after learning takes place. We found that S = 1/2, Bq =1, and /3. = 1 for the noiseless,
input noise, and output noise cases.

Next, we studied asymptotic learning behavior for large « in order to clarify whether
learning occurs under the existence of external noise. We defined the exponents B of
1 — R;,1—q and €; — 4| g1 for large a. We found that for any temperature, when «
becomes large, learning occurs for the noiseless case, as well as for the output noise case
with A < 1/2 and for the input noise case with any positive 7. We obtained B R = Bq =2
and . = 1 for the noiseless and output noise cases and BR = BE = 1/2 and Bq =1 for
the input noise case.

Now, let us summarize the numerical results and compare them with the theo-

retical results. We performed Markov chain Monte Carlo simulations (MCMCs) and
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exchange Monte Carlo simulations (EXMCs). For small «, by numerically estimating
the maximum value Ry, of the histogram of R;, we compared numerical results of the
a dependence of Ry, with theoretical results of R(«) and obtained consistent results.
For exponents S and B, we also obtained consistent results between the theory and
simulations. In order to study the temperature dependences of R; and ¢;, we performed
EXMCs. For the noiseless case, the numerical results confirmed the theoretical results.
For the input and output noise cases, we could not observe the SG phase numerically.
That is, when agg(T = 0, Anoise) < « and for T < Ti(a, Apoise), the SG phase was
expected theoretically, but numerically we found the L phase. In order to resolve this
disagreement, we studied the AT stabilities and free energies of the RS solutions. We
found that the free energy of the L solution is smaller than that of the SG solution for
the input noise and output noise cases. As for the AT stability, we found two cases. As
the temperature is lowered, the L solution becomes AT unstable and then the SG solu-
tion becomes AT unstable for the input and output noise cases for « = 10. In contrast,
for a = 30 for the output noise case, the SG solution first becomes AT unstable and
then the L solution becomes AT unstable as the temperature is lowered. Therefore, in
all the cases we studied, an RSB L solution is expected to appear. Next, we studied
the noise amplitude A dependence of learning for the output noise case. We found three
solutions, i.e., two learning solutions, the L; and L, solutions, and the SG solution. We
numerically found that when A is small, the L; solution appears and when \ is large,
the Lj solution appears, and the SG solution does not appear. We also studied the AT
stabilities and free energies of these solutions. We found that these solutions are AT
stable. The free energy of the L; solution is smallest, that of the Ly solution is middle,
and that of the SG is largest. The disagreement between the theory and simulations is
considered that the acceptance ratio of the Metropolis method is so low that the system
might be trapped to a local minimum of the free energy.
Finally, to investigate the asymptotic learning behavior, we studied the o dependence of
Ry and ¢, for large o and obtained consistent results between the theory and simulations
for the exponents BR and Bq.

Thus, except for the low-temperature region and small noise amplitude region, the
theoretical and numerical results agree reasonably well. From these results, we conclude

the following.

1. Learning behavior
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(1) a < asg(T =0, Apise)- For every temperature, only the P phase exists.

(2) asg(T =0, Anoise) < @ < ap(Anoise)- For T1(a, Thoise) < T', the P phase exists and
for T' < T (v, Thoise), the L phase exists.

(3) ao(Apoise) < av. For T (v, Thoise) < T, the P phase exists and for T' < Te (e, Thoise ),
the L phase exists.

2. Effects of noise
Learning takes place even if input noise (7 > 0) or output noise (0 < A < 1/2)

exists.

3. AT stability

The replica symmetry is broken at low temperatures.

8.2 And machine
Firstly, we summarize the theoretical result within the RS ansatz.

In the And machine, contrary to the Parity machine, we found that the critical loading
rate ac is 0 and the SG state does not exist. That is, learning takes place for any
positive o and for any temperature. Thus, in this case, we defined the exponents 3 of
R; and ¢ and the generalization error €, at a = 0. We found that 8 = 1, 8, = 2, and
B. = 1 for the noiseless, input noise, and output noise cases. The Exponents for R and
q are different from those for the Parity machine. Regarding the asymptotic behavior,
we obtained BR = Bq = 2 and . = 1 for the noiseless and output noise cases, and
BR = Be =1/2 and Bq = 1 for the input noise case, as for the Parity machine.

Next, we summarize the numerical results and compare them with the theoretical re-
sults. We performed MCMCs and EXMCs and found that learning takes place for any
positive a and for any temperature. For exponents 3z and 3., and also for exponents
BR and Bq, we obtained consistent results between the theory and simulations. In or-
der to study the temperature dependences of R; and ¢;, we performed EXMCs. For
the noiseless, input noise and output noise cases, the theoretical and numerical results
agreed reasonably well except at low temperatures. We consider that replica symmetry
breaking takes place at low temperatures as in the case of the Parity machine. From

these results, we conclude the following.

1. Learning behavior

For any a > 0 and any temperature, learning takes place.

2. Effects of noise
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Learning takes place even if input noise (7 > 0) or output noise (0 < A < 1/2)

exists.

3. Stability

The replica symmetry seems to be broken at low temperatures.

Now, let us compare our results with those obtained by previous studies. In Ref. 18,
Kabashima studied the online learning of a two-layer perceptron of the Parity machine
with non-overlapping receptive fields of K = 2. The amplitude of his example vector
was set to v/ M, the learning algorithm was the least-action algorithm (LAA), and the
output noise was studied. He found that if the noise rate A exceeds the critical value
A¢, students cannot acquire any generalization ability even in the limit o — oo. In
Ref. 17, Schottky and Krey studied the influence of noise on multilayer perceptrons
with non-overlapping receptive fields, i.e., the tree-like architecture. They treated the
Committee machine, the Parity machine, and the And machine for input and output
noise cases adopting the Gibbs and Bayes algorithms, and studied the behaviors of
learning in the ¢ — 1 and ¢ — 0 limits. They found the “Aha effect”, which occurs in
the case that a¢ is positive. Contrary to the result of Kabashima, they did not obtain
a critical noise level. In our model, a critical noise level does not exist. The reason for
this difference seems to be the difference in the algorithms. That is, Kabashima used
the LAA algorithm and online learning, whereas Schottky and Krey and we used the
Gibbs algorithm and batch learning.
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9. Appendix A. Derivation of Free Energy f, —8f = %(ln Z)pawt =G+
G2, of General Boolean Functions by the Replica Method
In this appendix, we calculate the partition function by the replica method and

derive the SPEs. Let us start by calculating e #FW&*],

K
oBEWET] HefBG(*UfLUZ)’ (198)

=1
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where O(z) is the Heaviside function,

1 forax >0,
O(x) = (199)
0 forzxz<O.
This is rewritten as
e PEIW.ET] H{e P+ (1-e?)o(don)}. (200)
Defining the following quantities:
S S S m“ : wsa
Uﬂ - Bs({sgn<hl,u)})7 hlu = l—\/Ml> (201>
K
dp(w}) = dw; §((w})* — M), du(w*) = | [ du(wy), (202)

=1

we have

:/[ﬁdu( }HH{ S (l—e )@(JZBS({sgn( f;)}))}. (203)

Let p(c[{hj,}) be the probability that the teacher takes a value of . Here, hj, is defined

as
xf - w]

N
The average of Z" with the probability distribution p(a|{hj,}), (Z")p, is expressed as

— [ [TLautw)] TT[ X stoltr,h]

o o==+1

< I [Teiery (AL} H@ (orhi2))]. (205)

h}fu = (204)

where we define

spey) = {0 T 200
° 0 for oy = —Bs({01}),

Aslo}) = e+ (1 -e?) a7 ({a}). (207)
Next, let us average over {@!'}. Since (z}')* = M, the average over {z|'} for a function

g({@}), (g is
() = [H o [ detdaly - an)|g (208)
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1 > dK e
_ {HS_ / da / g Hu ) M)}}g’ (200)
L M —ico 4T

SM:/dazl 5((wi™)? — M). (210)

where we define

(g), is rewritten as

deulfu{z«x) oy [ s WAL
[HSM/ L T [, - 22

I

[Tzt - 225

/ /m Kol (5 (20}
SM
wie.xh

Z w S St __
/dh}f# Ql#[HdhlSE o } e l)‘HZ i =) g9.(211)

Let us define vy, as

(vi); = zltuwltj + Z Zrrwy (212)
By performing integrations over {zj;}(j = 1,--+ ,1), (Z")p2 = ({(Z")p)s is given by

(Z",. = AxB, (213)

A= [Hdwf%((wfa)?—M)}
<I1 [ plolir,h) H(Tr{ala}AZ,g({af}»H@(ofhf;:)}, (214)

w £l

dz} I 1 dK
b I Lo ST f e
)

pl ul
x ex z’Zzt +zZZzsah5a—Z (v, (215)
p - i . 1 — 4K#1M'

Firstly, we perform the following mtegratlon:

/daaé(( 2 M) = / dat /delK (@f)-r)

. M
0 dK},Ll T MKl

- | L " 216
/m 2m'< KM) ‘ (216)

M
2
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The integral is evaluated at the saddle point K,; = 1/2, and we obtain

K

wl

( L) eMEu — \/%Me% = (\/%)M = Su. (217)

Hereafter, we set K,; = l. Thus,

M L t lu et
[HSM (2m)¥e H/dh o
H/ l,u zzsahsa}e—ﬁZz,#(vluV_ (218)

Lo
We define
(6% 1 St
(0% 1 S
q b= M(wl >wzﬂ)- (220)
Taking the average over w!, (I =1, -+, K) we have

(Z" ot = (A By = / [HdRa deHH dg?” Faﬂ eC1+Ca+Ca (991

where R{ and Flaﬂ are conjugate variables to R{* and qla , respectively. Here, eél, G2

and e are expressed as

sa Y0
H/dhlﬂ2 H/dhlu 2#
X exp [Z{m;hfu +0Y 0 Zehie
L

67

1 St so S «
—5{(zfu)2+2szZzluRl Z’Zlu —i-Qszzlfql }

@ a<f
<1 [Zp a|{ht,}) H(Tr{gla}( ({7} H@ ))} (222)
”w o+l
; 1

G2 /H dw;*§ ((w H dw;o((w})* — M)— S
Xeii Zal R?wlsa'w§+21,a<ﬂ Flaﬁwlsa'wzs67 (223>
Gy = iM Z R{Ry — M Y FPq”. (224)

la<p

Now, let us assume the replica symmetry:

RE=R , ¢’ =q,1=1,--- K. (225)
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Performing the integration over {z¢'}, {z],}, and {hj;}, we have

~ 1 —_ ql —_L (ptH2 ﬂan
Gy — dht DS, :| >oi 30 ( z#) +—3 lu}
) {H[ WA 2T =g+ n(a — RO |
p
X [ZP(UHM HEZ({—v1—aqby})} } } (226)
otl
_ 1—gq+n(q—R}) _ v a—R} _ t
Where Ql - 1—q,+nq : ) -Pl - \/[1_Ql+”(‘Il—R12)](1—QZ)’ blu = 1= ql+n(_1 @) h + PlSl,u; and

DG, ({vT — qiby,}) is defined as
(VT a]) = Ty (XD [[HTae)) 27
Hereafter, we omit the subscript @ and write the Varlables as
hiy = hi . Sy — S, by —b.

We change the integration variable from .S; to b;, given as
R

by = hj + P.S; = hy 22
! =+ nlg — ) |+ BSi = S+ By, (228)
where
Ry
—P . B = _ 229
T B 229
S; is expressed as
1
Sy = a(bl — Bihy). (230)

Thus, €% is rewritten as

eél _ H [ dhl dbl —2 l2+Lz+n ql b? 1-— q
Vor a 2r{l —q +n(q — R})}

xS plol{H{®s ({—v/T— abih)}"| } , (231)

o+l
where
1 By 1 q 1-—
L; = ht b ht hi)? R b ht 232
! 2(]1 R2< ) al : 2ql R?( l) + Z—RQ ll ( )

Setting Gy = pG4, we finally obtain

T H [ dhl dbl -3 l+Lz+n —Lv} 1—gq
V2 Cw 2r{l — q +n(q — R})}

< 3" ol {5, ({ /1T - abi}) } (233)

o==+1
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9.1 Input noise

An independent noise (; is entered in the input x; to the teacher. (¢;); is assumed

to be Gaussian with mean 0 and standard deviation 7;. From Eq. (204), we have
wf'(mf‘FCz): P, WG
g VM UM

w; - ¢

VM

| M
() = \/—MZwl,i<Q,i>=0, (235)

>
~
Il

(234)

Let us define 3, = . The averages of y; and y? are

i) = MZwuwz]C“QJ MZwM = 2. (236)

Hereafter, we assume 73 = 7. Thus, y; is a sum of many independent random variables,
and by the central limit theorem, it is a Gaussian random variable with the mean 0 and
the standard deviation 7. Its probability density function p(y;) is

1 v

p(y) = e 22, (237)
2T

The probability p(o|{h{}) that the teacher’s output is o is the probability that
B(o1,09) = 0. Thus, by defining AY({0;}) as

1 for o = B;({o;}),
7 ({on}) = o) (238)
0 for o =—-Bi({0}),

we obtain

polif)) = [ dud plun)ple) A7 ({sea(hi + )
= Trioy &7 (@D [] [ dwpwolonthi + ). (239)
!
Let us define x; by y; = 72, for [ = 1,2. Then, the integration with respect to x; yields
hi
p(o1{h)) = Triny A7 (o)) HH( ~ah). (240)
Therefore, we obtain the following result:

t 2 _ P2 (1 =
/dhzlf eLlH( B 01@) _ m(q Rz)eAlH ( QZ)RlblUQl (241)
T q Vet +q — R?)q

where we define

_ (L= a)*RiY

C 2q(q— R} (242)
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Thus, we have

TT | antebotolhin) =Ty 27 (o) ] \/W%Tl‘h’?)e&% ﬂ‘qfizlq;)f_’bg)ql)] (213)

Therefore, we obtain

b7 (1-g))°
eC1 = Trioy A7 {al}) qz/—dble T
Z {o1} \/—

o==+1

xH( ¢<_(1 — w)fibo )] (05, ({—v/1— ab})}" (244)

QT +q — R?)Qz

Making a variable transformation from b; to t; = %bl yields

= 3 Ty A7 (o) [H [ o] {HH( ¢Wﬂ“’—;_&2>](¢g,3<{—m}>)"<z45>

o==+1

From Eq. (227), we have
05.({Gt}) = Teep A5 (1o D [T H (utio?). (246)
l
qQ
l—q
By taking the limit n — 0, Eq. (245) becomes

R0t
G~ 14n Trpy A7 { /DtH - el }mq)“ vt V).
Z o &7 Qo) | IT [ Dt ER— 5({=uti})

(248)
Therefore, from Eq. (221), (Z"), 4.4t is obtained as
M - M s G
(2"t = / [Hde%dR?] [ [T dai”5—dF, ﬂ Gr+GatGa, (249)
L a<pf
We evaluate the integration of Eq. (249) at the saddle point,
<Zn> ~ €é1+é2+G~37 (25())
1 - N .
<111 Z> = E<G1 + Gz + Gg) (251)

Since G, = pGy, from Eq. (248), by setting t — —t, % is obtained as

W= X Mooy A7 (fo) {H [ o {HH( Rl“””_R%)}ln%,s({m})(%z)

o==*1 ]- + TQ)QZ

Next, we calculate e Similar to the case of K a1, We can set B} = 1. We obtain

i qE> B sa
o(wpey - r) = [T, (259)

—100
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Therefore, from Eq. (223), we have
1 1
dw dw)— —
/H 47rz 1:[ wl47TiSM]

1 M 1 o s
xexpl—5 S + o K — 5 ST B {(wi)? ~ M)
l,«

.
—i Z Rwi® - w} + Z FPwe - w?’). (254)
lo l,a<p

. t .
Integrating over wy ;, we obtain

e = Xy Gau (255)
5 dE? /27 150 1
GQ,Z]’ — SOé [, z E -
e = /[l;ld iyt ez o) (256)
Ela sa\2 aff, sa, sfB 1 Do, s\ 2
L = - Z 7("‘% )"+ ZFl wy; Wy — 2(2 Riwii)” (257)
«a a<pf «a
The RS conditions are
EX=F , F=F , R*=R, l=1,--- K. (258)
Thus, we have
El E1e% Sﬁ 2 s\ 2
L=-— O+ By witw — Zwlj). (259)
«a a<f a

By integrating over w*®, we have

dFE o\ 2 E;+ F, L1
eris = : __ LT 3 (260
[/H 47?21 4 (EH—F,) \/E1+R2+(1—n)(Fl—Rl2)e (sar) VM (260)

Since the right-hand side of Eq. (260) has no j dependences, we have

G~2 = Z égh = MZ ég’lj = MZ GAQJ. (261)
l,j l l

Thus, we obtain

dEC1V2r 1 21 N\ % E.+ F B e3
GQZ_ l _ _ n ‘ 962
UH‘“”] (7 \/EI+RQ+(1—H)(F}—R?) TR EE

Since Sg = v/2me, evaluating Eq. (262) at the saddle point, we obtain

Gy 1 o F— R?

2 E 2
n 2{nE1+F 1T E T (263)
ég G2l

-2 = M 264
- E (264)
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Next, we calculate G3:

Gs=iM> RfRi—M Y FYq”. (265)
lo lLa<pB
From the RS ansatz, we have
N — - 1
Gs = M{ZZRZRZ +5 ; Faq}. (266)
We define G’3 M(5. Therefore, we have
. - 1~
(ln Z) = (Gl + Gz + Gg) = —G, (267)
1 1 - 1.p
2 = G =y G1+ZGQ,+03) (268)
Let us define
G =G+ Gy + G (269)
Defining N = MK and o = £, we have
G « K .
M = MGl +;G2’l +G3 = NpGl +;G271 +G3
K
1 A G
= K {Q/Gl + I lz_; Go + ?} (270)
G _ G 15nCu 16 (211)
nN n K<< n n K’
We define
1 & G
A 3
= — —. 272
G = ;Ggl + = (272)
Thus, we obtain L and =2 as
n n
Gy / { Ryoity }
— = Dt Tri,n A7 ({o
o [T et e [ )
<@, (it (213)
Gy 1 o1 o F—R\ 1, - Faq
— = = -1 E — —).(274
n K;2<HEZ+FI+ T BT R +K(Zzl:RlRl+Zl: 2 -2
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G 1 G
We calculate the saddle points for N —aGy + 2. Using the conditions for the
n n _ n
saddle point of G5 with respect to E;, F; and R, we obtain
Gy 1 & — R?
2= N [ 2r(1— 1 | 275
&) [n(w( QZ))+ i (275)
By defining the quantities
R .
n= 1+ T Cl —12’ Xl = Cltla (276)
Vg — R;
M= Y=, (277)
l—q’

from Eq. (273) we obtain

a- 100 3 ey 2 Gop [ Aol mas, (v, em)

o=%1

3 ,({Y1}) is expressed as

G, (V}) = Trigp AL s({orh) [ [ H (o). (279)

9.2 Output noise

In the output noise case, the sign of the output o is reversed with a nonzero probabil-
ity. We assume that only the teacher suffers from output noise. Let A be the probability
that the teacher’s output is reversed. Then, the probability that teacher’s outputs a

value of o is
plel{h}) = (=X A7 ({sen(h))}) + M1 — A7 ({sen(hy)})}
= A (1= 2Ty 7 (o) [T Oleund) (250)

Let us calculate et in Eq. (233). We obtain

q— Rl (1 q Rlb>2 _
/ dhie"O(ahl) = 2 H(—01X))

AlH —0 X)), (281)

where A; is given by Eq. (242). Therefore, we have

H/ dhieMp(o|{h}) = {H*/ Az} )\+ 1—2)\)Tr{gl}< ({o—,})H (— o—lxl))]

64,70

(282)



J. Phys. Soc. Jpn.

As in the case with the input noise model, making a variable transformation from b; to

1—
t = a b, yields
Va

<)\ + (1 =2\ Trgoy A7 ({o1}) H H(_UIXZ)) (%,s({—

By defining the quantities

(= —2 (284)

\/QZ_Rly

Y, qi

=t 1/ ) 285
1= Nl 8l —q ( )
= (it; follows and we have

H/Dtl D A+ (1 =2N)Trey A7 (o)) [[ H(=01X0) 1@, ({—Y1})}"(286)

o=%1 l

By taking the limit n — 0, we obtain

(] [ Dt) 3= 02+ (1= 2 Toi0 &7 (o) [] H-ouX)} @5, (-Yi). (287
!

Making a variable change from ¢; to —t; yields

& L J Dt 3o {A + (1 =20 Tr(oy A7 ({0} [T, H(0:X0)} In 5 ({1 })288)

n
The expression for GGy is the same as that for the input noise model.

9.8 Noiseless case

From Eqgs. (276), (277), (284) and (285), v; is the same as the input and output
noise models. (; is obtained by setting 7 = 0 in Eq. (276) for the input noise case. This
is also the same as in the output noise case. On the other hand, the expression for GGy

is obtained by substituting A = 0 in the expression for the output noise case,
H / Dy Y (Tr{gl} AY ({al})HH(ale)) In®g ({vi}). (289)
!

This is also the same as in the input noise case with 7 = 0. G5 is the same as that in

o=%1

the input and output noise cases.

10. Appendix B. Derivation of the SPEs for Parity Machine
10.1 Input noise
Since o =1 for 01 = 03 and 0 = —1 for 0y = —05, < in Eq. (278) becomes

G

- /DtlDtQ{H(f(l)H(X'g) + H(=X1)H(—X5)} In®, (Y7,Y5)
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+HH(—X1)H(X2) + H(X1)H(—X3)} n®_ (Y1, Y2) (290)
- / Di DU[Hy (X, X5) In . (V1, Y3) + Hy(Xy, — %) Ind_(V3, Ya). (21)

Here, we define

O (Y1,Ys) = P (N,Ya) (292)
O_(Y1,Ys) = @5,(1,Ya), (293)
Hy(z,y) = H(z)H(y)+ H(—z)H(-y). (294)

The following relations hold:
H2(x7y) = Hg(y,.fll') = H2<_:C7 _y>7 H2<x7 _y) =1- H2<:C7y) = HQ(—.%,Z/) (295>

Using these relations, from Eq. (279), we obtain

O,(V1,Ys) = HM)H(Ya) + H(=Y\)H(=Ys) + e {HMY)H(=Y2) + H(=Y1)H(Y2)}
= Hy(V1,Y2) + e "Hy(Y1,-Y5) (296)
O_(Y1,Ys) = Ha(=Y1,Ys) +e "Hy(Y1,Y2) = Dy (=Y1,Y2) = @1 (Vy, —Y5)
= l1+e7=d (V1Y) (297)

Then, % becomes
Ie. - -
71 = /DtlDtQ[HQ(Xl,Xz) ID(I)_i_(le,YVQ) +H2(X1,—X2) lnq)+(n,—}/é)] (298)

By the variable change t5 to —t5, the second term on the right-hand side of this equation

is equal to the first term. Thus, we have

G .
71 = 2/Dt1Dt2H2(X1,X2)1n D, (Y1,Y5). (299)
Gs is given by Eq. (275). Thus, we have the following SPEs:
G —R = 4da(l—ePaq(l—q)ly, 1=1,2, (300)
Ri(ng — R} = —dang(l—q)by, 1=1,2. (301)
S 1
Il,l - /DtlDt2t1H2<X17XQ)h(YI)Ha(}/Q)m, (302)
Ly = / Dty Dtyt1h(X1)Hy(X5) In @ (Y7, Y5), (303)
L 1
11’2 — /DtlDtthHQ(Xl,Xg)h(Yé)Ha(Yi)m, (304)
Ly = / Dty Dtytoh(Xy)Hy(X,) In @, (Y1, Y5). (305)
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We assume that ¢ = gand R; = R (I = 1,2). Then, we have X, =Ct, (=& Y, =

vt and v = /q%l. By exchanging integration variables t; <+ to in I 5, we have [; 1 =
I, 5. Similarly, in 55, by using @, (Y7, Ys) = @, (Y2, Y)), we have

I, :/DtlDt2t2h(X2)Ha(X1)1nq)+(Y2,Y1)' (306)
By exchanging integration variables t; <+ 2 in I 5, we have Iy ; = I 2. We define
: Hy (X, X5)
IV = 21 :2/DtDtthYHaY2—’, 307
{ Dtatih(¥i) H, (V) g (307)
) = 2, =2 / Dty Dtgt h(X1)Ha(X5) In @, (Y7, Ya). (308)
Thus, from Egs. (300) and (301), the SPEs become
¢ -R = 20(1-e")l—q) I}, (309)
R(ng— R**? = —2anq(1 - q) 1. (310)
10.2 Qutput noise
From Eq. (278), <t is
G
71 = /DtlDtQ{{)\—l—(l _QA)HQ(Xl,XQ)}ln¢+(}/1,}/2)
A+ (1= 20 (X0, —X0) I (¥:,Y5) }
_ /DtlDtQ{{)\ (1 20 ) Ha(X, Xo)} In b (1, 2)
F{A+ (1= 20 Hy(Xy, —X,)  In @ (15, —1/2)}. (311)
Here, we use ®_(Y1,Y5) = &, (Y7, —Y5). As in the input noise case, this is rewritten as
G 2/Dt1Dt2{)\+(1—2/\)H2(X1,X2)}ln<1>+(Y1,Y2). (312)
n
From Eq. (312), we have
% - 2/Dt1Dt2{)\+ (1= 20 Hy(X1, X5)} In @ (Y3, Va). (313)
We assume ¢; = g and R; = R for [ = 1, 2. Then, we have X; = (t;, ( = \/R_R2’ Y =1
o
and v =, /7% We define / ©) and 1L as
h(Y1)H,(Y2)
I = 2| Dt; | Dtp{r+ (1 — 20)Hy (X1, Xo) }t) =222 14
1 / 1/ AN+ ( )JHa (X1, 2)}1<I>+(Y1,Y2)’ (314)
LY = 2 / Dt / Diy(1 — 20\)h(X1) Hy(Xo )t In @ (Y3, Ya). (315)
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The SPEs are given by
¢-R = 20(1-e?)g(l-q) I, (316)

R(g— R**? = —2aq(1—q) I{". (317)

10.3 Noiseless case
In this case, quantities are obtained by setting 7 = 0 in the expressions for the
input noise, or setting A = 0 in the output noise. Thus, assuming ¢, = ¢ and R; = R

for [ = 1,2, we obtain

h(Y1)Hq(Y2)
m = Dt, | DtHy(X1, X 2 1
A / tl/ toHo (X1, Xo)ti —F— B, (V1,Ys) (318)
IV = 2| Dt; [ Dtosh(X1)Hy(Xo)t In @ (Y1, Ya), 319
2
¢ —R = 2a(l—ef)/q1—q) I, (320)
R(q— R*)*? = —QQQUP—Q)]yﬂ- (321)

11. Appendix C. Derivation of the SPEs for the And Machine
In this Appendix, we derive the SPEs for the And machine. We assume ¢, = ¢ and
R =Rforl=1,2. Xl, X; and Y] are the same as those for the Parity machine.

11.1 Input noise
S in Eq. (278) is

G _ / Dt Dty {H(X)) H(Xs) In @ (Y3, Ya)

HH(X)H(—Xo) + H(=X1)H(Xs) + H(=X1)H(—X5)) In®_(V1,Y>)}

_ / Dt Dty {H(X)) H(X) In @, (Y, Ya) + H(X1, Xo) In®_(Vi,¥)}, (322)
where H(Xy, X5) = 1 — H(X,)H(X,). From Eq. (279), we obtain
. (V1,Ys) = HMY)HYs)+e PH(Y1,Y)
= e+ (1 —e Y HM)H(Yy) = D4 (Y2, Y1), (323)
O (Vi,Ys) = HY,Ya)+e PHY)H(Y:) =1+e P =0, (V1,Ys).  (324)
Thus, =+ is

& /Dt1Dt2{H()~(1)H(X2) @ (Y1,Ys) + H(Xy, X5) n®_(Y3,Ya)}.  (325)

68,70



J. Phys. Soc. Jpn.

G2 18
Gy 1 1— R?
2= 5(111(27r(1 —a)t S, ) (326)
The SPEs become
P —-R = al-e)g 1—qJ1, (327)
Ring — R*): = —anq(1—q)J, (328)
(M) 1
— 2 [ Dt,Dtot,h(Y1) H(Y:
g / e N R ATy
(@, (V1,Y3) — (14 e ) H(X) H (%)}, (329)
| o d_(V1,Ys)
(1) 1,42
— 2 [ Dt,DtR(X)H (X))t In[ b2
7 [ v m(EEE ) @

11.2 QOutput noise

Similar to the input noise case, from Eq. (278), we have

% /DtlDtQ [{)\ + (1= 20 H (X)) H(X5)} In @ (Y1, Y2)
{0+ (1= 20 H(Xy, X)) Ind_ (3, 1/2)]. (331)
(332)

The SPEs are
P-R = a(l-e g1 -qJ, (333)
Rlg—R%? = —aq(l—q)J\, (334)
A = 2 [ oup B H %) gy

X[y (Y1, V) = (L+ e ) {A+ (1 =20 H(X1)H(X2)],  (335)
JO = 91 -2)) / Dt Dtoh(X1) H (X2t h(%). (336)

11.8 Noiseless case
Since the quantities for the noiseless case are obtained by substituting 7 = 0 in the
expressions for the input noise or substituting A = 0 in the expressions for the output

noise, we have

W= 2 DtlDtQtlh(mH(mwn,Y2>1<I><Y1,Y2>
x[@y(Y1,Ys) — (14 e ") H(X1)H(X5)), (337)
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QJ(Y1,Y2))‘

(n)
= —2 [ Dt;Dtyh(X))H(Xo)t In| — %
Jy / 1Dtah (X)) H( 2)1n(q)+(Y1,Y2)

The SPEs are

C-R = al—e)/q(l—q)J",

R(g— R = —aq(1—q)Ji".
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