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We study the unlearning of mixed states in the Hopfield model for the finite loading case, that

is, α = p
N � 1, where N and p are the numbers of neurons and embedded patterns, respec-

tively. In the general situation that any number of mixed states that exist in the model is un-

learned, we derive the saddle point equations (SPEs) and evolution equations for overlaps by

introducing sublattices. We postulate a condition that the solutions are stable in equilibrium,

and prove that the static and dynamic stabilities are the same. We also prove that the stable

state of the Hopfield model continuously changes and is statically and dynamically stable

for sufficiently small unlearning coefficients. For p = 3, we perform detailed theoretical and

numerical calculations. In the case that a single mixed state is unlearned, we determine phase

boundaries using the Hessian matrix and by numerically integrating evolution equations. We

performed Markov chain Monte Carlo simulations and find that the simulation results agree

with the theoretical ones reasonably well. For general p, when all of the mixed states are un-

learned with an equal unlearning coefficient η, we derive the formulae for critical unlearning

coefficients at the temperature T = 0 below which embedded patterns and mixed states exist

and are stable as solutions of the SPEs. We found that there is an unlearning region of (T, η)

in which all patterns are retained and all mixed states are deleted, although tuning the param-

eters in this region is more difficult as p increases since the region shrinks. We numerically

confirmed the theoretical results of the p dependences of the critical unlearning coefficients.

1. Introduction

One of the roles of dreaming is considered to be to regulate memories, that is, unnecessary

memories are considered to be deleted by dreaming.1) In this context, we consider strength-

ening important memories and weakening unnecessary memories. In this work, as a concrete
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model, we study the Hopfield model.2) As is well known, in the Hopfield model, when p

patterns are stored, a combination of several patterns, a mixed state, is also stored. There

are several types of stable mixed state.3–5) We study the unlearning of mixed states. There

have been many studies on unlearning in neural networks.6–10) These papers treat unlearning

the final states starting from noisy inputs, or unlearning by parallel dynamics, or unlearning

by using asymmetric synaptic weights, and so forth. In particular, in Refs. 11 and 12, as a

candidate of unnecessary memories, a spin glass state is considered.

In this study, we treat symmetric synaptic weights and asynchronous dynamics. In the

Hopfield model, spin glass states appear for the extensive loading of patterns. Since we study

the finite loading case, mixed states are only spurious states. We investigate the statics and

dynamics of the network taking unlearning into account.

We postulate that the stability at the equilibrium is determined by the condition that the

para state is stable at high temperatures. We prove that the static stability determined by this

assumption agrees with the dynamic stability in general situations. First of all, as the simplest

case, we study the case p = 3, and perform detailed theoretical and numerical calculations.

In particular, for the case that a single mixed state is unlearned, we numerically integrated

evolution equations by the Runge-Kutta (RK) method, and performed Markov chain Monte

Carlo (MCMC) simulations. The numerical results agree with the theoretical ones quite well.

Since we found that the RK method gives the same phase boundaries as those determined

by the eigenvalues of the Hessian matrix and MCMC simulations for the unlearning of the

single mixed state, we study the unlearning of multiple mixed states by the RK method for

general p. Secondly, we study the case that all mixed states are unlearned and derive critical

unlearning coefficients at T = 0, below which embedded patterns and mixed states exist.

We show that we can eliminate all mixed states and retain all patterns if the temperature and

the unlearning coefficient take values in some region in (T, η) space. The larger the number

of patterns, the smaller the difference between two critical coefficients. In particular, both

coefficients are zero at p = ∞. This implies that the larger the value of p, the more difficult it

is to tune the parameters in the region.

This paper is organized as follows. In sect. 2, we formulate the problem in the general

situation that any number of mixed states is unlearned, and describe the saddle point equations

(SPEs) of overlaps in the equilibrium and evolution equations for overlaps and sublattice

overlaps. In sect. 3, we study in detail the case that one and several mixed states are unlearned

for p = 3 in detail. In sect. 4, we study the case that all mixed states are unlearned for a general

p. Section 5 contains a summary and discussion of the results. In Appendices A and B, we

2/35



J. Phys. Soc. Jpn.

derive evolution equations for sublattice overlaps and prove the equivalence of the static and

dynamic stabilities of the solutions of the SPEs, respectively. In Appendices C and D, in the

case that the single mixed state is unlearned, we describe the SPEs and the stability of the

solutions of the SPEs, respectively.

2. Formulation

The Hopfield model is a recurrent network of N neurons, in which all neurons interact

with each other. The state of the ith neuron is represented by si. si = 1 or si = −1 corresponds

to a firing state or a rest state, respectively. The number of patterns is set to p. Let ξµ =

(ξµ1 , ξ
µ
2 , ..., ξ

µ
N) be µth pattern, where µ = 1, 2, · · · , p. We assume that ξµi takes values of ±1

independently with the probability 1/2. Let us denote the configuration of N neurons as s =

{si} and let Ji j be the synaptic weight from the jth neuron to the ith neuron. We assume

Ji j = J ji and Jii = 0. The synaptic weight of the Hopfield model, J(H)
i j , is given by J(H)

i j =
1
N

∑p
µ=1 ξ

µ
i ξ
µ
j , (i , j),

J(H)
ii = 0.

(1)

The input signal to the ith neuron at time t, hi(t), is given by

hi(t) =
∑
j(,i)

Ji js j(t). (2)

In the deterministic update, the new state of the ith neuron is

si(t + ∆t) = sgn
(∑

j(,i)

Ji js j(t)
)
, (3)

where sgn(x) = 1 for x ≥ 0 and -1 for x < 0. We take the time increment ∆t = 1
N . In this

study, we consider the probabilistic update, and the probability that the ith neuron takes the

value ±1 is given by

Prob[si(t + ∆t) = ±1] =
1 ± tanh[βhi(t)]

2
. (4)

Here, β = 1
T and T represents the strength of noise and is called the ‘temperature’ in this

paper.

2.1 Statics

By adopting an asynchronous update, the stationary state of the network becomes equiv-

alent to the equilibrium state of the canonical ensemble with the following Hamiltonian H:

H = −
∑
i< j

Ji jsis j. (5)
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In the Hopfield model, for p � N, all patterns are stored when T < Tc, where Tc is given

by Tc = 1. Furthermore, mixed states with three patterns are also stable when T < T3, where

T3 ' 0.46.4)

In this paper, we treat the case of a general p and consider the unlearning of any

number of mixed states with three patterns. A mixed state is denoted by ξ(µ;γ) =

(ξ(µ;γ)
1 , ξ

(µ;γ)
2 , · · · , ξ(µ;γ)

N ) and determined as

ξ
(µ;γ)
i = sgn(γ1ξ

µ1
i + γ2ξ

µ2
i + γ3ξ

µ3
i ), i = 1, · · · ,N. (6)

Here, µ = (µ1, µ2, µ3) and µ1, µ2, and µ3 are all different and take values in {1, 2, · · · , p}.
γ = (γ1, γ2, γ3) and |γi| = 1, (i = 1, 2, 3). Without loss of generality, we set µ1 < µ2 < µ3. We

subtract the mixed states from J(H)
i j and treat the following synaptic weight Ji j,

Ji j = J(H)
i j + J(U)

i j =
1
N

p∑
µ=1

ξ
µ
i ξ
µ
j +

1
N

∑
V
ζ(µ;γ)ξ

(µ;γ)
i ξ

(µ;γ)
j . (7)

Here, ζ(µ;γ) is the unlearning coefficient, that is, when ζ(µ;γ) is negative, ξ(µ;γ) is unlearned.

V is the set of superscripts (µ;γ) with which a mixed state ξ(µ;γ) is unlearned, and
∑
V

denotes the summation of all mixed states with superscripts in the setV. Let u be the number

of unlearned mixed states, u ≡ |V|. When all patterns ξ1, · · · , ξp change their signs, that is,

by the transformation (ξ1, · · · , ξp) → (−ξ1, · · · ,−ξp), Ji j does not change. We call this the

inversion symmetry. Because of the inversion symmetry, we may set γ1 = 1 without loss of

generality. At first sight, Eq. (7) seems to represent the unlearning of the mixed states ξ(µ;γ)

only. However, there is a correlation between the mixed state with µ = (µ1, µ2, µ3) and the

pattern ξµk , (k = 1, 2, 3), that is,

1
N

N∑
i=1

ξ
(µ;γ)
i ξ

µk
i = 〈〈ξ(µ;γ)ξµk〉〉 = 1

2
γk for k = 1, 2, 3. (8)

Here, double brackets 〈〈·〉〉 denote the average over ξ1, ξ2, · · · , ξp, where ξµ takes values of

±1 with probability 1/2. In this paper, when a quantity is averaged and expressed by double

brackets, we omit its subscript, which is i in the present case, if it does not cause any confu-

sion. The first equality follows from the self-averaging because N � 2p. Therefore, a part of

ξµk is subtracted from Ji j for k = 1, 2, 3. Nevertheless, we still call the present procedure the

‘unlearning’ of the mixed states for simplicity. For later use, we write correlations between

two mixed states ξ(µ;γ) and ξ(µ′;γ′) where µ′ = (µ′1, µ
′
2, µ
′
3) and γ′ = (γ′1, γ

′
2, γ
′
3).

1
N

∑
i

ξ
(µ;γ)
i ξ

(µ′;γ′)
i = 〈〈ξ(µ;γ)ξ(µ′;γ′)〉〉 (9)
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0 {µ1, µ2, µ3} ∩ {µ′1, µ′2, µ′3} = φ, none of the elements of µ

and µ′ agree.
1
4γiγ

′
l , µi = µ

′
l , one of the elements of µ and µ′ agrees.

1
4 (γiγ

′
l + γ jγ

′
m), µi = µ

′
l , µ j = µ

′
m, two of the elements of µ and µ′ agree.

1 µ = µ′,γ = γ′

0 µ = µ′,γ , γ′

(10)

2.2 SPEs

In this subsection, we formulate the general case that any number of mixed states is un-

learned. For simplicity, we denote mixed states by ξp+1, · · · , ξv, where v = p + u, and rewrite

Ji j [Eq. (7)] as

Ji j =
1
N

v∑
µ=1

ζµξ
µ
i ξ
µ
j , (11)

where ζ1 = · · · = ζp = 1. The order parameters of the system are the overlaps mµ between s

and ξs,

mµ(t) =
1
N

N∑
i=1

ξ
µ
i si(t), (µ = 1, · · · , v). (12)

By the standard recipe, the free energy per neuron f and the SPEs are derived as

f =

v∑
µ=1

ζµ
(mµ)2

2
− 1
β
〈〈ln[2 cosh β(

v∑
µ=1

ζµmµξµ)]〉〉, (13)

mµ = 〈〈ξµtanh[β(
v∑
ν=1

ζνmνξν)]〉〉, µ = 1, · · · , v. (14)

2.3 Stability of solutions of the SPEs

In this subsection, we study the stability of the solutions of the SPEs. The stability of

a solution is determined by the Hessian matrix Λ = {Λµν}, where Λµν =
∂2 f
∂mµ∂mν , which is

evaluated at the solution. To find a condition under which the solution is stable, we study the

behavior of f at high temperatures. For β � 1, f is expressed as

f '
v∑
µ=1

ζµ
(mµ)2

2
+ const. (15)

Since the para (P) state in which the mµ are 0 for all µ should be stable at high temperatures,

f should be minimal with respect to mµ for positive ζµ and be maximal with respect to mµ for

negative ζµ. Let λ be the eigenvalues of Λ, and let us define λ as λ1 ≥ λ2 ≥ λ3 ≥ λ4 · · · ≥ λv.

For example, let us consider the case that p = 3 and only the mixed state ξ4 ≡ ξ(1,2,3;1,1,1) is

5/35



J. Phys. Soc. Jpn.

unlearned. Defining ζ1 = ζ2 = ζ3 = 1 and ζ4 = −η, the condition under which the solution is

stable is given by λ1 > 0, λ2 > 0, λ3 > 0, λ4 < 0 for η > 0 and λ1 > 0, λ2 > 0, λ3 > 0, λ4 >

0 for η < 0. Thus, in general situations, a solution is stable when the number of positive

(negative) eigenvalues is the same as the number of positive (negative) ζµ. We prove that the

thus defined static stability agrees with the dynamic stability in Appendix B.

In the next subsection, we formulate the dynamics of the network.

2.4 Dynamics

Let pt(s) be the probability that the configuration of neurons is s= (s1, s2, ..., sk, ..., sN) at

time t and let wk(s) be the transition probability from s to Fks ≡ (s1, s2, ...,−sk, ..., sN) per unit

of time. Fk is the flip operator of the kth neuron. We adopt the following function as wk(s):

wk(s) =
1
2

[1 − sktanh(βhk)], (16)

hk =
∑
j(,k)

Jk js j. (17)

Then, the time evolution of pt(s) is described by the following master equation:

∂

∂t
pt(s) =

N∑
k=1

[wk(Fks)pt(Fks) − wk(s)pt(s)]. (18)

It is shown that the stationary state of Eq. (18) is the equilibrium state of the canonical en-

semble with the Hamiltonian given by Eq. (5).

Now, let us introduce sublattices and sublattice overlaps. The number of possible config-

urations of {ξµi } ≡ (ξ1
i , ξ

2
i , · · · , ξ

p
i ) with i fixed is 2p. For each configuration, we introduce a

sublattice Λl of neurons in such a way that Λl+2p−1 = Λl holds for l = 1, · · · , 2p−1. The number

of elements in Λl, |Λl|, is |Λl|=
N
2p (l =1, 2, · · · , 2p). The sublattice overlapMl is defined as

Ml =
1
|Λl|

∑
i∈Λl

si =
2p

N

∑
i∈Λl

si, l = 1, · · · , 2p.

Using {Ml}, the overlap mµ is expressed as

mµ =
1
N

N∑
i=1

ξ
µ
i si =

1
N

2p∑
l=1

∑
i∈Λl

ξ
µ
i si =

1
N

2p∑
l=1

ξµ,l
∑
i∈Λl

si =
1
2p

2p∑
l=1

ξµ,lMl, µ = 1, · · · , v.(19)

ξµ,l is the value of ξµi for i in Λl. Now, let us study the evolution equations for {Ml}. We define

M = (M1,M2, · · · ,M2p) and dM =
∏2p

l=1 dMl. Let pt(M) be the probability density that

the sublattice overlapMl takes a value in (Ml,Ml + dMl) for l = 1, · · · , 2p at time t,

pt(M) = Trs pt(s)
2p∏

l′=1

δ(Ml′−
2p

N

∑
i∈Λl′

si). (20)
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The evolution equation forMl is
dMl

dt
= −Ml + tanh[βhl(M)], l = 1, · · · , 2p. (21)

Here, hl(M) is expressed as

hl(M) =

v∑
µ=1

ζµΞµ,l
1
2p (ΞM)µ,

whereΞ is a v×2p matrix whose (µ, l) element is Ξµ,l = ξµ,l. See Appendix A for the derivation.

For l ≤ 2p−1, hl+2p−1
(M) = −hl(M) holds because Ξµ,l+2p−1 = −Ξµ,l. Thus, we have

dMl+2p−1

dt
= −Ml+2p−1 − tanh[βhl(M)], l = 1, · · · , 2p−1, (22)

dMl

dt
= −Ml + tanh[βhl(M)], l = 1, · · · , 2p−1. (23)

From these equations, we obtain
d(Ml+2p−1 +Ml)

dt
= −(Ml+2p−1 +Ml).

Its solution is

Ml(t) +Ml+2p−1(t) = e−t[Ml(0) +Ml+2p−1(0)].

As t → ∞, we have

Ml+2p−1 = −Ml for l ≤ 2p−1.

Therefore, we assumeMl+2p−1 = −Ml for l ≤ 2p−1 in equilibrium. Thus, mµ is expressed as

mµ =
1

2p−1

2p−1∑
l=1

ξµ,lMl, µ = 1, · · · , v. (24)

Evolution equations for mµ are also derived. Let us define the probability density pt(m) of

overlaps m = (m1,m2, · · · ,mv) at time t as

pt(m) = Trs pt(s)
v∏
µ=1

δ(mµ− 1
N

∑
j

ξ
µ
j s j). (25)

By using the same recipe as that used to derive Eq. (21), we obtain

d
dt

mµ = −mµ + 〈〈ξµ tanh[β(
v∑
ν=1

ζνmνξν)]〉〉, µ = 1, · · · , v. (26)

Any stationary state of the evolution equations given by Eq. (26) satisfies the SPEs (14).

2.5 Relationship between static and dynamic stabilities of equilibrium solution

As is proved in Appendix B, the static and dynamic stabilities of any stationary state are

the same, and any stable state of the Hopfield model (η = 0) continuously changes and is stat-
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ically and dynamically stable for sufficiently small unlearning coefficients. Furthermore, it is

proved in Appendix B that the stationary solution becomes unstable statically and dynami-

cally at the same time in generic situations that all ζµ(µ = 1, · · · , v) are different. Hereafter,

we assume ζ1 = · · · = ζp = 1 and ζp+1 = · · · = ζv = −η.

3. Case of p = 3

In this section, we study the case of p = 3. Sublattices are given as

Λ1 = [i|(ξ1
i , ξ

2
i , ξ

3
i , ξ

4
i , ξ

5
i , ξ

6
i , ξ

7
i ) = (1, 1, 1, 1, 1, 1,−1)],

Λ2 = [i|(ξ1
i , ξ

2
i , ξ

3
i , ξ

4
i , ξ

5
i , ξ

6
i , ξ

7
i ) = (1, 1,−1, 1, 1,−1, 1)],

Λ3 = [i|(ξ1
i , ξ

2
i , ξ

3
i , ξ

4
i , ξ

5
i , ξ

6
i , ξ

7
i ) = (1,−1, 1, 1,−1, 1, 1)],

Λ4 = [i|(ξ1
i , ξ

2
i , ξ

3
i , ξ

4
i , ξ

5
i , ξ

6
i , ξ

7
i ) = (1,−1,−1,−1, 1, 1, 1)],

Λ5 = [i|(ξ1
i , ξ

2
i , ξ

3
i , ξ

4
i , ξ

5
i , ξ

6
i , ξ

7
i ) = (−1,−1,−1,−1,−1,−1, 1)], (27)

Λ6 = [i|(ξ1
i , ξ

2
i , ξ

3
i , ξ

4
i , ξ

5
i , ξ

6
i , ξ

7
i ) = (−1,−1, 1,−1,−1, 1,−1)],

Λ7 = [i|(ξ1
i , ξ

2
i , ξ

3
i , ξ

4
i , ξ

5
i , ξ

6
i , ξ

7
i ) = (−1, 1,−1,−1, 1,−1,−1)],

Λ8 = [i|(ξ1
i , ξ

2
i , ξ

3
i , ξ

4
i , ξ

5
i , ξ

6
i , ξ

7
i ) = (−1, 1, 1, 1,−1,−1,−1)],

where ξ4
i , ξ

5
i , ξ

6
i , and ξ7

i are defined as

ξ4
i ≡ ξ(1,2,3:1,1,1)

i = sgn(ξ1
i + ξ

2
i + ξ

3
i ), (28)

ξ5
i ≡ ξ(1,2,3:1,1,−1)

i = sgn(ξ1
i + ξ

2
i − ξ3

i ), (29)

ξ6
i ≡ ξ(1,2,3:1,−1,1)

i = sgn(ξ1
i − ξ2

i + ξ
3
i ), (30)

ξ7
i ≡ ξ(1,2,3:1,−1,−1)

i = sgn(ξ1
i − ξ2

i − ξ3
i ). (31)

Correspondingly, m4,m5,m6, and m7 are defined as

m4 =
1
N

N∑
i=1

ξ(1,2,3:1,1,1)
i si(t), (32)

m5 =
1
N

N∑
i=1

ξ(1,2,3:1,1,−1)
i si(t), (33)

m6 =
1
N

N∑
i=1

ξ(1,2,3:1,−1,1)
i si(t), (34)

m7 =
1
N

N∑
i=1

ξ(1,2,3:1,−1,−1)
i si(t). (35)
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Let Ξ and X be the following 7 × 8 and 7 × 4 matrices, respectively, whose (µ, l) component

is ξµ,l.

Ξ = (X,−X) , (36)

X =



1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 1 1 −1

1 1 −1 1

1 −1 1 1

−1 1 1 1


. (37)

Equation (24) in equilibrium is written as(
m1 m2 m3 m4 m5 m6 m7

)T
=

1
4

X
(
M1 M2 M3 M4

)T
,

where T implies the transpose. Let X4 be the 4 × 4 matrix whose (µ, l) element is ξµ,l for µ =

1, · · · , 4, l = 1, · · · , 4. Since |X4| = 8, X has an inverse, that is, m1, · · · ,m4 andM1, · · · ,M4

have a one-to-one correspondence. Therefore, in the equilibrium state, m5,m6, and m7 are

expressed in terms of m1, · · · ,m4. X−1
4 is

X−1
4 =

1
2


1 1 1 −1

0 0 −1 1

0 −1 0 1

1 0 0 −1


. (38)

Thus, we have the following relations in equilibrium:
M1

M2

M3

M4


= 4X−1

4


m1

m2

m3

m4


= 2


m1 + m2 + m3 − m4

−m3 + m4

−m2 + m4

m1 − m4


, (39)


m5

m6

m7

 =


m1 + m2 − m4

m1 + m3 − m4

−m2 − m3 + m4

 . (40)

From Eq. (19), it follows that the dynamic stability of {mµ} and that of {Ml} are the same.

Also, from Eq. (39), it follows that the static stability of {mµ}µ=1,··· ,4 and that of {Ml}l=1,··· ,4 are

the same.
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3.1 Case that one mixed state is unlearned

In this subsection, we study the case that only ξ4 = ξ(1,2,3;1,1,1) is unlearned. The SPEs are

mµ = 〈〈ξµ tanh(βWi)〉〉, µ = 1, · · · , 4, (41)

Wi =

3∑
µ=1

ξ
µ
i mµ − ηξ4

i m4. (42)

Here, we put ζ4 = −η. Let us describe the solutions of the SPEs. Let (m1,m2,m3,m4) be a so-

lution of the SPEs (41). Then, (m1′,m2′,m3′,m4), in which m1′,m2′, and m3′ are a permutation

of m1,m2, and m3, is also a solution of the SPEs (41). We call this the permutation symmetry.

Furthermore, −m is also a solution of the SPEs (41). This is the inversion symmetry. Because

of the inversion and permutation symmetries, we assume m1 > 0 and m1 ≥ m2 ≥ m3 without

loss of generality. The following types of solution of the SPEs exist.

(1) S2 state. m1 > m2 = m3.

The Hopfield attractor H characterized by m = (m1, 0, 0,m4) does not exist when the

unlearning term exists. See Appendix C. Since m2 = m3 ' 0 in the S2 state for |η| � 1,

S2 is regarded as a variant of the Hopfield attractor.

(2) M4 state. m1 = m2 = m3.

This corresponds to the mixed state M(H)
4 in the Hopfield model characterized by m1 =

m2 = m3.

(3) M5 state. m1 = m2 ' −m3.

The mixed state M(H)
5 in the Hopfield model characterized by m1 = m2 = −m3 does not

exist when the unlearning term exists. See Appendix C. The M5 state is considered to be

a variant of M(H)
5 .

(4) S3 state. m1,m2, and m3 are all different.

(5) P state. m = (0, 0, 0, 0).

In the Hopfield model, there are other mixed states M(H)
6 and M(H)

7 characterized by m1 =

−m2 = m3 and m1 = −m2 = −m3, respectively. In the present model, t other mixed states

exist: M6 characterized by m1 = m3 ' −m2 corresponding to M(H)
6 and M7 characterized

by m1 ' −m2 = −m3 corresponding to M(H)
7 . Because of the permutation and inversion

symmetries, these mixed states M6 and M7 have the same static and dynamic stabilities as

the M5 state. Thus, we only have to study the M4 and M5 states.

Now, let us show some numerical results. We performed MCMC simulations. The transi-

tion probability from sk → −sk is given by Eq. (16).

10/35



J. Phys. Soc. Jpn.

3.1.1 Statics

As initial conditions, we chose a Hopfield-attractor-like configuration m = (m1, 0, 0,m4)

and a mixed-state-like configuration m = (m1,m1,m1,m4). It turned out that N should be of

the order 105 so that the theoretical and simulation results agree. We took several values of N

and several hundred Monte Carlo sweeps (MCSs), where one MCS corresponds to one update

of N neurons on average. The overlaps were calculated by averaging the overlaps in the time

period from 450 to 500 MCSs. The typical number of samples is 10. In Fig. 1, we display the

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

T

m1

m2

m3

m4

m1
S2

m4
S2

m2
S2
,m3

S2

Fig. 1. Temperature dependences of overlaps. η = 0.5. Curves: theory. Solid curve: S2, dashed curve: M4.

Symbols: Monte Carlo simulations. N = 105. Averages are taken from 10 samples. Vertical lines denote the

error bars. +: m1, ×:m2, *:m3, �:m4. Initial configuration: m = (0.5, 0.5, 0.5, 1).

temperature dependences of overlaps for η = 0.5. In both the Hopfield-attractor-like initial

configuration (for which results are not shown) and the mixed-state-like initial configuration,

the S2 state appears for 0 < T < 0.85 and the S3 state appears for 0.85 < T ≤ 1. Theoretically,

we could not find the S3 state. Thus, it seems that the theoretical and simulation results do

not agree, at least for 0.85 < T ≤ 1. We will discuss this in the next subsection. In Figs. 2(a)

and 2(b), we display the temperature dependences of overlaps for η = −0.5. Starting from

a Hopfield-attractor-like initial configuration, the S2 state appears for 0 < T < 0.57 and the

mixed state M4 appears for 0.58 < T < 1.42, as shown in Fig. 2(a). On the other hand, starting

from a mixed-state-like initial configuration, the mixed state M4 appears for 0 < T < 1.42.

See Fig. 2(b). The S2 state and the unstable S2 state, which is not drawn in the figure, are

annihilated at T ' 0.58. For 0 < T < 0.57, the Hopfield attractor and the mixed state M4

coexist.

The agreement between the numerical and theoretical results is quite good. In the next sub-

section, we study whether the S3 state exists for η = 0.5 at approximately T = 1.
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(b)
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Fig. 2. Temperature dependences of overlaps. η = −0.5. Curves: theory. Solid curve: S2, dashed curve: M4.

Symbols: Monte Carlo simulations. N = 105. Averages are taken from 10 samples. Vertical lines denote the

error bars. +: m1, ×:m2, *:m3, �:m4. (a) Initial configuration: m = (1, 0, 0, 0.5). (b) Initial configuration: m =
(0.5, 0.5, 0.5, 1).

3.1.2 Search for S3 state near critical temperature, T ' Tc

We performed MCMC simulations for larger values of the system size N and calculated

the difference m2 − m3 at T = 0.9 and 0.95. In Fig. 3, for T = 0.9, we display log10 N

vs log10(m2 − m3) with error bars for N = 105,N = 106,N = 3 × 106, and N = 107 with

numbers of samples of 100, 50, 50, and 20, respectively. We estimated log10(m2 − m3) ∼

(a)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0  2  4  6  8  10

log10N

Fig. 3. log10 N vs log10(m2 − m3). T = 0.9.

−0.009926∗log10N+0.127675 at T = 0.9 and log10(m2−m3) ∼ −0.047090∗log10N+0.328158

at T = 0.95. From these results, we note that the difference between m2 and m3 decreases as

N increases. That is, the numerical results of observing the S3 state is a finite size effect and

it is concluded that the S2 state appears near Tc for N = ∞ as the theory predicts.
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Fig. 4. Phase diagram in (T, η) space determined by using Hessian matrix. (a) Stable regions for P, S2, and

M4. (b) Stable regions for M4 and M5.

3.1.3 Phase diagram

Now, let us study the phase diagram in (T, η) space. The stable regions for solutions

are determined by using the Hessian matrix. That is, the boundaries a, · · · , e in Fig. 4 are

determined as follows.

a : Boundary between the S2 state and the coexistent region of the S2 and M4 states. From

Fig. 1, we note that at low temperatures, the M4 state exists but is unstable. The boundary

is determined by an eigenvalue of the Hessian matrix for the M4 state. See Eq. (D·11) in

Appendix D.

λ = Λ11 − Λ12 = 0, i.e.,
β

cosh2[β(m1 − ηm4)]
= 1.

b : Boundary between the P and S2 states for η > 0, which is determined by an eigenvalue

of the Hessian matrix for the P state. See Eq. (D·7) in Appendix D.

λ1 = λ2 = Λ11 = 1 − β = 0, i.e., T = 1.

c : Boundary between the M4 state and the coexistent region of the S2 and M4 states. This

is determined by an eigenvalue of the Hessian matrix for the S2 state. See Eq. (D·17) in

Appendix D. From Fig. 2(a), we note that at this boundary, stable and unstable S2 states

merge and are annihilated.

λ4 = 0, i.e., −Λ23Λ11Λ44−Λ2
11Λ44−4Λ12Λ24Λ14+2Λ11Λ

2
24+2Λ44Λ

2
12+Λ

2
14Λ23+Λ11Λ

2
14 = 0.

d : Boundary between the P and M4 states for η < 0, which is determined by the eigenvalue

λ− of the Hessian matrix for the P state. See Eq. (D·8) in Appendix D.

λ− =
1
2

(
Λ11 + Λ44 −

√
(Λ11 − Λ44)2 + 12Λ2

14

)
= 0, i.e., η =

4T (1 − T )
4T − 1

.
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e : Boundary of the stable M5 state. The boundary is determined by

−Λ11Λ44Λ12 − Λ2
11Λ44 − 4Λ34Λ13Λ14 + 2Λ11Λ

2
14 + 2Λ44Λ

2
13 + Λ12Λ

2
34 + Λ11Λ

2
34 = 0.

See (D·14) in Appendix D.

In Fig. 4, the characters denoted in the regions that are surrounded by the curves represent

the stable phases. For η > 0, by unlearning, the region where the mixed state M4 is stable

decreases in size as η increases, and disappears at η = 0.5, which is easily proved. On the

other hand, the S2 state exists up to T = 1 for η > 0. Since the S2 state is regarded as a variant

of the Hopfield attractor, it seems that the region where the pattern is stable does not decrease.

For η < 0, as η decreases, the stable region of M4 increases, but the region where the S2 state

is stable decreases slowly compared with the decrease in the stable region of M4 for η > 0

and disappears at about η ∼ −1.73. Figure 4(b) shows the phase diagram only for M4 and M5.

The stable region of M5 is almost unchanged for η > 0 and decreases slowly as |η| increases

for η < 0. That is, the unlearning of ξ4 does not cause any significant change in size in the

stable region of the mixed state M5. This is considered to be because 〈〈ξ4ξ5〉〉 = 0.
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P

Fig. 5. Stable regions of solutions in (T, η) space. Curves: boundaries obtained by theory using the Hessian

matrix, dots: stable regions obtained by MCMC simulation. N = 105.

To confirm the stable regions for solutions numerically, we performed MCMC simula-

tions and numerically integrated Eq. (26) by the RK method. We iterated the RK routine

10000 times with a time increment of 0.01. This implies that we integrate the evolution equa-

tions up to t = 100, which is considered to be sufficient for trajectories to converge (as seen

later in Fig. 7). On the other hand, we performed MCMC simulations for 106 MCSs and

used the following criteria to decide the convergent state. First of all, we selected the max-

imum value of |mµ| among |m1|, |m2|, and |m3|, and if mµ < 0, we changed the signs of all

overlaps. Then, we renumbered the overlaps as m1 > m2 > m3. We started with both the

Hopfield-attractor-like and mixed-state-M4-like initial conditions. We successively imposed

the following conditions to decide the convergent states.
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Fig. 6. Phase boundaries obtained by theory using the Hessian matrix (curves) and by the RK method (sym-

bols).

(1) If m1 < 0.04, the state is regarded as P,

(2) else if m1 − m2 < 0.08 and m1 − m3 < 0.08, the state is regarded as M4,

(3) else if |m2| < 0.005 and |m3| < 0.005, the state is regarded as H,

(4) else if |m2 − m3| < 0.01, the state is regarded as S2,

(5) else, the state is regarded as S3.

The results obtained for both initial conditions are used to decide the convergent states. On

the other hand, to determine the stable region of M5, we started the M5-like initial condition

and added the following criterion after (3),

(3’) else if |m1 − m2| < 0.25 and |m1 − m3| < 0.25, the state is regarded as M4,

In Fig. 5, we display the theoretical results obtained by using the Hessian matrix and the

numerical results obtained by MCMC simulations. In Fig. 6, we draw the phase boundaries

obtained using the Hessian matrix and by the RK method. On the boundary of the M4 state for

T < 1, the results obtained by MCMC simulations and using the Hessian matrix in Fig. 5(a)

do not agree very well. The results obtained by the RK method and using the Hessian matrix

in Fig. 6 also do not agree very well. We consider that the reason for this is that the criteria

for determining the boundaries of stable regions of solutions by MCMC simulations have

ambiguities, that is, we chose conditions such as 0.04 in criterion (1) heuristically. Except for

at this boundary, the theoretical and numerical results agree reasonably well.

3.1.4 Dynamics

We performed MCMC simulations for N = 105 by taking Hopfield-attractor-like and

mixed-state-like initial configurations. We compare simulation results obtained by MCMC
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simulations with theoretical ones obtained by the RK method. In Fig. 7(a), we display the

time series of overlaps for η = 0.5 and T = 0.2. Only the S2 state exists in this region. Under

both initial conditions, all trajectories tend to the S2 state. In Fig. 7(b), we display the time

series of overlaps for η = −0.5 and T = 0.2. In this region, S2 and M4 coexist. Depending on

the initial conditions, trajectories tend to the S2 state and the mixed state M4. The theoretical

and simulation results agree quite well.

(a)
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Fig. 7. Curves: theory (RK). Solid curve: m1, dashed curve: m2, dotted curve: m3, dashed-dotted curve: m4.

Symbols: Monte Carlo simulations. N = 105. ×: m1, ∗: m2, �: m3, ◦: m4. (a) η = 0.5, T = 0.2. Initial con-

ditions are m = (0.6, 0, 0, 0.3) and m = (0.49, 0.5, 0.49, 1). (b) η = −0.5, T = 0.2. Initial conditions are

m = (0.6, 0, 0, 0.3) and m = (0.196, 0.204, 0.199, 0.4).

The case that another mixed state is unlearned is reduced to the unlearning of ξ4 as fol-

lows. Let us consider the unlearning of ξ(1,2,3;γ1,γ2,γ3). Defining quantities as ξµ′ = γµξµ,mµ′ =

γµmµ (µ = 1, 2, 3), and ξ4
i
′ = ξ

(1,2,3;γ1,γ2,γ3)
i = sgn(ξ1

i
′ + ξ2

i
′ + ξ3

i
′), m4′ = m(1,2,3;γ1,γ2,γ3), the SPEs

become

mµ′ = 〈〈ξµ′ tanh[β(
3∑
ν=1

ξν′mν′ − ηξ4′m4′)]〉〉ξ′ . (43)

This is simply the SPEs for the unlearning of ξ4. Thus, the stable region of a memory state

coincides with one of the stable regions of the memory states for the unlearning of ξ4. The

same holds true for mixed states. Thus, we next study the case that multiple mixed states are

unlearned.

3.2 Case that multiple mixed states are unlearned

In this subsection, we describe numerical results for the unlearning of multiple mixed

states. Hereafter, we use new notations to identify solutions. The memory state corresponding
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to ξµ and the mixed state corresponding to ξ(µ;γ) are denoted by Mµ and M(µ;γ), respectively.

In particular, for simplicity, when γ = (1, 1, 1), we use ξµ and Mµ instead of ξ(µ;1,1,1) and

M(µ;1,1,1), respectively. Since the S2 state is considered to be a variant of the Hopfield attractor,

we do not distinguish the M1 and S2 states and denote both of them by M1. We numerically

integrated the evolution equations given by Eq. (26) by the RK method starting from memory

states or mixed states in order to obtain stable regions of these states. Suppose that we study

the overlaps m1,m2, · · · ,mv, and let mω correspond to the state Mµ or M(µ;γ). For each (T, η),

we set the initial conditions to mω = 0.9 and mν = 〈〈ξωξν〉〉+ r for ν , ω, where r is a random

number in [−0.1, 0.1]. After the trajectory converges, we determine the maximum overlap mµm

among m1, · · · ,mv. We judge that the parameter (T, η) is in the stable region of Mµ or M(µ;γ)

if µm = ω and |mµm | > 0.1. The criterion of the convergence is that ||m(t + 1) − m(t)|| < 10−5

after a transient, i.e., for t > 10. Here, ||m|| =
√∑v

i=1(mi)2. This criterion to determine the

stable region gives similar results to those in Fig. 5 when ξ4 is unlearned. In Figs. 8-10, we

show the results of unlearning two, three, and all mixed states, respectively. We note that the

stable regions of memory states are reduced in size for η > 0 when multiple mixed states are

unlearned. The reason for this is considered to be that the mixed states and memory states are

correlated. In order to clarify that this is generally true, we study the case that all mixed states

are unlearned with equal weight in the next section for a general value of p.
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Fig. 8. p = 3. ξ(1,2,3) and ξ(1,2,3;1,1,−1) are unlearned with equal weight. Stable regions of solutions are shown

in (T, η) space. Dots: stable regions obtained by the RK method. (a) M1, (b) M3, (c) M(1,2,3), (d) M(1,2,3;1,−1,1),

(e) a special state in which m1 = −m2 = m6,m3 = m4 = m5 = 0, (f) para state.
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Fig. 9. p = 3. Three mixed states ξ(1,2,3), ξ(1,2,3;1,1,−1), and ξ(1,2,3;1,−1,1) are unlearned with equal weight. Stable

regions of solutions are shown in (T, η) space. Dots: stable regions obtained by the RK method. (a) M1, (b)

M(1,2,3), (c) M(1,2,3;1,−1,−1), (d) para state.
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Fig. 10. p = 3. All mixed states ξ(1,2,3), ξ(1,2,3;1,1,−1), ξ(1,2,3;1,−1,1), and ξ(1,2,3;1,−1,−1) are unlearned with equal

weight. Stable regions of solutions are shown in (T, η) space. Dots: stable regions obtained by the RK method.

(a) M1, (b) M(1,2,3), (c) para state.

4. Case that All Mixed States are Unlearned

For convenience, we include γ1 = −1 in the summation of mixed states
∑
ν in the interac-

tion Ji j and rewrite it as

J(U)
i j = − η

2N

∑
V′
ξ

(µ;γ)
i ξ

(µ;γ)
j , (44)

whereV′ = V ∪ {(µ,γ) with γ1 = −1}. The SPEs are

mµ = 〈〈ξµ tanh(βW)〉〉, µ = 1, · · · , p, (45)

m(µ;γ) = 〈〈ξ(µ;γ) tanh(βW)〉〉, (µ;γ) ∈ V′, (46)

W ≡
p∑
ν=1

ξνmν − η
2

∑
V′
ξ(µ,γ)m(µ,γ). (47)

The following relation is useful for deriving the equations below.

sgn(ξ1 + ξ2 + ξ3) =
1
2

(ξ1 + ξ2 + ξ3 − ξ1ξ2ξ3). (48)

Let us define the critical coefficients ηpattern
c (T ) and ηmix

c (T ) at temperature T below which

the pattern and the mixed states exist and are stable as solutions of the SPEs, respectively.

These coefficients should satisfy ηpattern
c (T pattern

c ) = 0 and ηmix
c (T mix

c ) = 0. Here, T pattern
c = 1

and T mix
c ' 0.46 are critical temperatures under which the pattern and mixed states with three
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patterns exist for the Hopfield model, respectively. In this section, we derive the formulae

for ηpattern
c (0) and ηmix

c (0). Since all patterns have the same stability and so do all mixed states

because of the permutation and inversion symmetries, we take ξ1 and ξ(µ0;γ0) with µ0 =

(1, 2, 3) and γ0 = (1, 1, 1) as a memory state and a mixed state, respectively. Firstly, let

us consider ξ1. When T = 0, m1 becomes 1. Thus, we set si = ξ
1
i . Since mµ = δµ,1 and

m(µ,γ) = 〈〈ξ(µ,γ)ξ1〉〉 = 1
2γ1δµ1,1, Wi is calculated as

Wi = ξ1
i − η

∑
1<µ2<µ3

∑
γ2

∑
γ3

1
2
ξ

(µ,γ)
i =

(
1 − η

2
(p − 1)(p − 2)

)
ξ1

i . (49)

The SPEs given by Eq. (45) become

δµ,1 = 〈〈ξµ tanh(βW)〉〉 = 〈〈ξµξ1 tanh[β
(
1 − η

2
(p − 1)(p − 2)

)
]〉〉

= δµ,1 tanh[β
(
1 − η

2
(p − 1)(p − 2)

)
]. (50)

Taking the limit β→ ∞, if 1 − η2 (p − 1)(p − 2) > 0, the SPEs are satisfied. Thus, we obtain

η
pattern
c (0) =

2
(p − 1)(p − 2)

. (51)

Next, let us study the SPEs given by Eq. (46). They become
1
2
γ1δµ1,1 = 〈〈ξ(µ;γ) tanh(βW)〉〉 = 〈〈ξ(µ;γ)ξ1〉〉 tanh[β

(
1 − η

2
(p − 1)(p − 2)

)
]. (52)

This is automatically satisfied in the limit β → ∞ for η < ηpattern
c (0). Now, let us study the

stability of ξ1 for η < ηpattern
c (0). In this case, W , 0. The Hessian matrix is

Λµν =


δµν − β〈〈ξµξν cosh−2(βW)〉〉, µ, ν ≤ p,

βη〈〈ξµξν cosh−2(βW)〉〉, µ = 1, · · · , p, ν > p,

−ηδµν − βη2〈〈ξµξν cosh−2(βW)〉〉, µ, ν > p.

(53)

Since cosh−2(βW)→ 0 as β→ ∞, the eigenvalues of Λ are 1 (p-fold) and −η (u-fold). Thus,

ξ1 is stable for η < ηpattern
c (0).

Next, let us study the mixed state ξ(µ0,γ0). We set si = ξ
(µ0,γ0)
i . Wi is calculated as

Wi =
1
2

(ξ1
i + ξ

2
i + ξ

3
i ) − η

2

∑
µ,γ
〈〈ξ(µ,γ)ξ(µ0,γ0)〉〉ξ(µ,γ)

i (54)

=
1
2

(ξ1
i + ξ

2
i + ξ

3
i ) − η

2
(W (1)

i +W (2)
i +W (3)

i ), (55)

where W (1)
i , W (2)

i , and W (3)
i are the terms in Wi for which one, two, and all of µ1, µ2, and µ3

agree with one, two, and all of 1, 2, and 3, respectively. After a little algebra, we obtain

W (1)
i =

(p − 3)(p − 4)
2

(ξ1
i + ξ

2
i + ξ

3
i ), (56)

W (2)
i = 2(p − 3)(ξ1

i + ξ
2
i + ξ

3
i ), (57)
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W (3)
i = 2sgn(ξ1

i + ξ
2
i + ξ

3
i ) = 2ξ(µ0,γ0)

i . (58)

Therefore, we obtain

Wi =
1
2

(ξ1
i + ξ

2
i + ξ

3
i ) − η

4

(
p(p − 3)(ξ1

i + ξ
2
i + ξ

3
i ) + 4ξ(µ0,γ0)

i

)
= V xi − ηξ

(µ0,γ0)
i , (59)

where xi = ξ
1
i + ξ

2
i + ξ

3
i and V = 1

2 −
η

4 p(p − 3). In the limit of β→ ∞, the SPEs given by Eq.

(46) become

m(µ;γ) = 〈〈ξ(µ;γ)sgn
(
V xi − ηξ(µ0,γ0)

)
〉〉. (60)

If µ = µ0 and γ = γ0, we have

1 = 〈〈sgn(V |xi| − η)〉〉. (61)

From this, we obtain

ηmix
c (0) =

2
(p − 1)(p − 2) + 2

. (62)

If none of the elements of µ agree with the elements of µ0, both sides of Eq. (60) are 0. Let

us consider the case that one of the elements of µ and µ0 agree. We assume µ1 = 1. Then, Eq.

(60) becomes
1
4
γ1 = 〈〈sgn(yi) sgn

(
V xi − η sgn(xi)

)
〉〉, (63)

where yi = γ1ξ
1
i + γ2ξ

µ2
i + γ3ξ

µ3
i . The right-hand side (r.h.s.) of Eq. (63) is calculated as

〈〈sgn(yi) sgn
(
V xi − η sgn(xi)

)
〉〉 = γ1

8

(
sgn(3V − η) + sgn(V − η)

)
. (64)

If η < ηmix
c (0), V > η follows. Thus, the r.h.s. of Eq. (63) is equal to γ1

4 and to the left-hand

side (l.h.s.) of Eq. (63). Next, we study the case that two elements of µ and µ0 agree. We

assume µ1 = 1 and µ2 = 2. Equation (60) becomes
1
4

(γ1 + γ2) = 〈〈sgn(yi) sgn
(
V xi − η sgn(xi)

)
〉〉, (65)

where yi = γ1ξ
1
i + γ2ξ

2
i + γ3ξ

µ3
i . We obtain

r.h.s. of Eq. (65) =
1
8

(γ1 + γ2)
(
sgn(3V − η) + sgn(V − η)

)
. (66)

This is equal to 1
4 (γ1 + γ2) and to the l.h.s. of Eq. (65) if η < ηmix

c (0). Finally, let us study the

case that µ = µ0. Eq. (60) becomes

1
4

(
3∑

k=1

γk +

3∏
k=1

γk) = 〈〈sgn(yi) sgn
(
V xi − η sgn(xi)

)
〉〉, (67)
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where yi = γ1ξ
1
i + γ2ξ

2
i + γ3ξ

3
i . Then, we obtain

r.h.s. of Eq. (67) =
1
8

(
(γ1 + γ2 + γ3 − γ1γ2γ3)sgn(3V − η)

+(γ1 + γ2 + γ3 + 3γ1γ2γ3)sgn(V − η)
)
. (68)

This is equal to 1
4 (γ1 + γ2 + γ3 + γ1γ2γ3) and to the r.h.s. of Eq. (67) if η < ηmix

c (0). Therefore,

all SPEs are satisfied. The stability of ξ(µ0;γ0) is the same as that of ξ1 because the eigenvalues

of Λ are 1 (p-fold) and −η (u-fold). Thus, all memory states for η < ηpattern
c (0) and all mixed

states for η < ηmix
c (0) are stable at T = 0. From Eqs. (51) and (62), ηpattern

c (0) > ηmix
c (0) follows.

We numerically integrated the evolution equations given by Eq. (26) with T = 0 by the RK

method starting from the memory states or mixed states for several values of p in order to

obtain the stable regions of these states. The criterion of the convergence is that ||m(t + 1) −
m(t)|| < 0.0001 after a transient, i.e., for t > 50. In Fig. 11, we display the p dependences

of ηpattern
c (0) and ηmix

c (0). The numerical results agree with the theoretical ones reasonably

well. As an example, in Fig. 12, for p = 7, we display the stable regions for the memory

state, mixed state, and para state in the (T, η) plane. Thus, we can eliminate all mixed states

 0

 0.2

 0.4

 0.6

 0.8

 1

 2  4  6  8  10

p

η
pattern
c (0)
ηmix

c (0)

Fig. 11. p dependences of critical unlearning coefficients ηpattern
c (0) and ηmix

c (0). Curves: theory. Solid curve:

η
pattern
c (0) and dashed curve: ηmix

c (0). Symbols: results obtained by the RK method. Averages are taken from

about 50 samples. Vertical lines denote the error bars. +: ηpattern
c (0) and ×: ηmix

c (0).

and retain all patterns by unlearning in the region R surrounded by ηmix
c (T ), ηpattern

c (T ), T =

0, and η = 0. In order to tune the parameters (T, η) in this region, there are two opposite

factors. Since ηpattern
c (0) → 0 and ηmix

c (0) → 0 as p → ∞, the larger the value of p, the more

difficult it is to tune the parameters in R. The other factor is the better one for tuning. Because

η
pattern
c (T pattern

c ) = 0 and ηmix
c (T mix

c ) = 0, tuning the parameters in R seems easier compared

with situations in which no such constraints exist.
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Fig. 12. All mixed states are unlearned. p = 7. Stable regions of solutions are shown in (T, η) space obtained

by the RK method. (a) M1, (b) M(1,2,3), (c) para state.

5. Summary and Discussion

We studied unlearning in the Hopfield model for the case of finite loading of patterns

in order to remove mixed states and strengthen the stability of memory states. For the finite

loading case, mixed states are the only spurious states. As a method of unlearning, we added

terms of mixed states with coefficients ζµ to the Hamiltonian of the Hopfield model. We set

ζµ = −η throughout the paper when we perform numerical calculations. These terms have the

effects of removing the mixed states for η > 0 and learning them for η < 0.

In this work, firstly, we studied general situations that any number of mixed states is un-

learned and obtained the following results. We derived the SPEs and the evolution equations

by introducing sublattices and sublattice overlaps. We postulated that the stability at the equi-

librium is determined by the condition that the para state is stable at high temperatures. We

proved that the static stability determined by this assumption agrees with the dynamic stabil-

ity in general situations and that any stable state of the Hopfield model (η = 0) continuously

changes and is statically and dynamically stable for sufficiently small unlearning coefficients.

Furthermore, we proved that the stationary solution of the SPEs becomes unstable statically

and dynamically at the same time in generic situations.

Next, we studied the case of p = 3 in detail. In the case that the single mixed state ξ4 = ξ(1,1,1)

is unlearned, we obtained the following results. For η , 0, the Hopfield attractor does not ex-

ist; instead, the S2 state appears. In the S2 state, m1(> 0) is largest and m2 = m3. This solution

is regarded as a variant of the Hopfield attractor. Similarly, the mixed state M(H)
5 for η = 0,

which is characterized by m1 = m2 = −m3, changes to M5 with m1 = m2 , −m3 for η , 0. On

the other hand, the mixed state characterized by m1 = m2 = m3 exists for η , 0 as well.

As η increases from 0, the region where the mixed state M4 is stable decreases in size and

disappears at η = 0.5. On the other hand, the stable S2 region exists up to T = 1 for any

η(> 0), at least for η ≤ 0.5. That is, by unlearning, the spurious state ξ4 is deleted while

memory states are retained.
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The S3 state in which m1,m2, and m3 are all different could not be found by numerically

solving the SPEs, although in the MCMC simulations, the S3 solution seemed to exist for

small values of N and near the critical temperature Tc with η fixed. It turned out that this

phenomenon is a finite size effect because the S3 state tends to the S2 state as N becomes

large.

In the case of η < 0, that is, in the case of the learning of the mixed state ξ4, as η decreases,

the region where the mixed state M4 is stable increases in size. On the other hand, the re-

gion where the S2 state is stable decreases slowly compared with the decrease in the stable

region of M4 for η > 0 and disappears at about η ∼ −1.73. We also studied the stability of

other mixed states. It is sufficient to study the stability of M5 owing to the permutation and

inversion symmetries that exist in the system. We found that the stable region of M5 is almost

unchanged for η > 0 and decreases very slowly in size as |η| increases for η < 0. Therefore, we

studied the unlearning of other mixed states, ξ(1,2,3;1,1,−1), ξ(1,2,3;1,−1,1), and ξ(1,2,3;1,−1,−1), in order

to delete these mixed states. We found that when multiple mixed states are unlearned, the sta-

ble regions of memory states are reduced for η > 0. The reason for this is considered to be that

mixed states and memory states are correlated. In order to clarify whether this is generally

true, we studied the case that all mixed states are unlearned with equal weight for a general

value of p. We defined the critical coefficients ηpattern
c (T ) and ηmix

c (T ) at the temperature T

below which the pattern and the mixed states exist and are stable as solutions of the SPEs,

respectively. We derived the formulae for ηpattern
c (0) and ηmix

c (0) and their p dependence was

numerically confirmed. Therefore, we can eliminate all mixed states and retain all patterns

by the unlearning of all mixed states in the region R surrounded by ηmix
c (T ), ηpattern

c (T ),T = 0,

and η = 0. In order to tune the parameters (T, η) in this region, there are two opposite factors.

Since ηpattern
c (0)→ 0 and ηmix

c (0)→ 0 as p→ ∞, the larger the value of p, the more difficult it

is to tune the parameters in R. The other factor is the better one for tuning. These coefficients

satisfy ηpattern
c (T pattern

c ) = 0 and ηmix
c (T mix

c ) = 0, where T pattern
c = 1 and T mix

c ' 0.46 are critical

temperatures below which the pattern and mixed states with three patterns exist for the Hop-

field model, respectively. Owing to these constraints, tuning the parameters in R seems easier

compared with situations in which no such constraints exist.
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Appendix A: Evolution Equations for Sublattice Overlaps

In this Appendix, we derive evolution equations for sublattice overlaps {Ml}. Let pt(M)

be the probability density ofM = (M1,M2, · · · ,Mp
2) at time t,

pt(M) = Trs pt(s)
2p∏

l′=1

δ(Ml′−
2p

N

∑
i∈Λl′

si).

Its time evolution is calculated as

∂

∂t
pt(M) = Trs

∂pt(s)
∂t

2p∏
l′=1

δ(Ml′−
2p

N

∑
i∈Λl′

si)

= Trs
2p∑
l=1

∑
k∈Λl

wk(s)pt(s)
[
δ{Ml −

2p

N

∑
i∈Λl

si −
2p

N
(s′k − sk)} − δ(Ml −

2p

N

∑
i∈Λl

si)
]

×
∏
l′,l

δ(Ml′−
2p

N

∑
i∈Λl′

si)

= Trs
2p∑
l=1

∑
k∈Λl

wk(s)pt(s)
{ ∂
∂Ml
δ(Ml−

2p

N

∑
i∈Λl

si) · (−
2p

N
)(s′k − sk)

∏
l′,l

δ(Ml′−
2p

N

∑
i∈Λl′

si)
}

= Trs
2p∑
l=1

∑
k∈Λl

pt(s)
2p

N
2wk(s)sk

∂

∂Ml

∏
l′
δ(Ml′ −

2p

N

∑
i∈Λl′

si),

= Trs
2p∑
l=1

∂

∂Ml

[
{Ml −

2p

N

∑
k∈Λl

tanh(βhk)}pt(s)
∏

l′
δ(Ml′ −

2p

N

∑
i∈Λl′

si)
]
,

where s′k = −sk. For k ∈ Λl, hk is calculated as

hk =
∑
j(,k)

Jk js j =
∑
j(,k)

1
N

v∑
µ=1

ζµξ
µ
k ξ
µ
j s j '

v∑
µ=1

ζµξ
µ
k mµ =

v∑
µ=1

ζµξ
µ,l 1

2p

2p∑
l′=1

ξµ,l
′Ml′

≡ hl(M),

where ξµ,l is the value of ξµk for k in Λl. Therefore, we obtain∑
k∈Λl

tanh(βhk(M)) =
N
2p tanh(βhl(M)),

hl(M) =

v∑
µ=1

ζµξ
µ,l 1

2p

2p∑
l′=1

ξµ,l
′Ml′ .

Thus, we obtain
∂

∂t
pt(M) =

∑
l

∂

∂Ml

[
{Ml − tanh(βhl(M))}Trspt(s)

∏
l

δ(Ml −
2p

N

∑
i∈Λl

si)
]

=
∑

l

∂

∂Ml

[
{Ml − tanh(βhl(M))}pt(M)

]
.
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This implies
dMl

dt
= −Ml + tanh[βhl(M)], l = 1, · · · , 2p. (A·1)

hl(M) is rewritten as

hl(M) =

v∑
µ=1

ζµΞµ,l
1
2p (ΞM)µ,

where Ξ is the v × 2p matrix of which (µ, l) element is Ξµ,l = ξµ,l.

Appendix B: Equivalence of Static and Dynamic Stabilities of Solutions of SPEs

Let us study the stability of the stationary solutions of evolution equations given by Eq.

(26). Since the derivatives of f with respect to the overlaps are

∂ f
∂mµ

= ζµmµ − ζµ〈〈ξµtanh[β(
v∑
ν=1

ζνmνξν]〉〉, µ = 1, 2, · · · , v, (B·1)

Eq. (26) is rewritten as
dmµ

dt
= − 1

ζµ

∂ f
∂mµ
, µ = 1, 2, · · · , v. (B·2)

Let us define m as

m = (m1,m2, · · · ,mv)T, (B·3)

where T implies the transpose. Let m∗ be a stationary state of Eq. (26) and δm be a deviation

from m∗,

m(t) = m∗ + δm, (B·4)

m∗ = (m1∗,m2∗, · · · ,mv∗)T, (B·5)

δm = (δm1, δm2, · · · , δmv)T. (B·6)

Thus, we obtain

d
dt
δmµ = − 1

ζµ

∂ f
∂mµ

∣∣∣∣∣m∗+δm
' − 1
ζµ

v∑
ν=1

∂2 f
∂mµ∂mν

δmν, µ = 1, 2, · · · , v. (B·7)

By defining Λµν =
∂2 f
∂mµ∂mν

∣∣∣∣∣m=m∗
, Eq. (B·7) is rewritten as

d
dt
δm = −Λ̂δm, (B·8)
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where

Λ̂ =



Λ11 · · · Λ1p Λ1p+1 · · · Λ1v

Λ21 · · · Λ2p Λ2p+1 · · · Λ2v
...

...
...

...
...

...

Λp1 · · · Λpp Λpp+1 · · · Λpv

1
ζp+1
Λp+11 · · · 1

ζp+1
Λp+1p

1
ζp+1
Λp+1p+1 · · · 1

ζp+1
Λp+1v

...
...

...
...

...
...

1
ζv
Λv1 · · · 1

ζv
Λvp

1
ζv
Λvp+1 · · · 1

ζv
Λvv



. (B·9)

The solution of Eq. (B·8) is

δm(t) = e−Λ̂tδm(0). (B·10)

Therefore, the stability condition for m∗ is that the real parts of all eigenvalues of Λ̂ are

positive. Let us define a v × v matrix G({ζµ}) as

G({ζµ}) = G({ζµ})T =



ζ1 0 · · · 0 0 · · · 0

0 ζ2 · · · 0 0 · · · 0

0 · · · . . . · · · 0 · · · 0

0 · · · · · · ζp 0 · · · 0

0 · · · 0 0 ζp+1 · · · 0

0 · · · 0 0 . . .
. . . 0

0 · · · 0 0 0 · · · ζv


. (B·11)

By defining δm̃ = G({
√
|ζµ|})δm, from Eq. (B·8), we obtain

d
dt
δm̃ = −Λ̃δm̃, (B·12)

Λ̃ = G({
sgn(ζµ)√
|ζµ|
})TΛG({ 1√

|ζµ|
}). (B·13)

If ζµ > 0 for all µ, we obtain

Λ̃ = G({ 1√
ζµ
})TΛG({ 1√

ζµ
}).

Therefore, by Sylvester’s law of inertia, the numbers of positive, negative, and zero eigen-

values are the same for Λ̃ and Λ. Thus, in this case, the dynamic and static stabilities are the

same. On the other hand, if a negative ζµ exists, we have to use a different argument. It is

necessary to study the Hessian matrix in detail.

Hereafter, the ζ are expressed as follows:

ζµ = 1, µ = 1, · · · , p (B·14)
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ζµ = −ηµ, µ = p + 1, · · · , v. (B·15)

We assume that all the ηµ take nonzero values. We have the following relation:

Λ̂(η) ≡ Λ̂(ζ) = G({− 1
ηµ
})Λ(η), (B·16)

where we define

η = (η1, η2, . . . , ηv), (B·17)

ζ = (ζ1, ζ2, . . . , ζv). (B·18)

Here, we explicitly write down the η dependences of Λ and Λ̂. Let λ1(η), λ2(η), · · · , λv(η)

be the eigenvalues of Λ(η). Similarly, let λ̂1(η), λ̂2(η), · · · , λ̂v(η) be the eigenvalues of Λ̂(η).

Let us study the eigenvalues of Λ(η) for the stationary state m∗. The components of Λ(η) are

expressed as

Λ(η)µν =


δµν − β〈〈ξµξν cosh−2 W∗〉〉, µ, ν ≤ p,

βην〈〈ξµξν cosh−2 W∗〉〉, µ = 1, · · · , p, ν > p,

−ηµδµν − βηµην〈〈ξµξν cosh−2 W∗〉〉, µ, ν > p,

(B·19)

where W∗ ≡ β(∑3
ν=1 mν∗ξν −∑v

ν=p+1 ηνm
ν∗ξν). We solve the characteristic equation

∣∣∣∣Λ(η) − λEv

∣∣∣∣ = 0, (B·20)

where Ev is the v × v unit matrix. Since a solution of Eq. (B·20) is a function of η, we denote

it by λ(η). Then, we have

h(η) ≡
∣∣∣∣Λ(η) − λ(η)Ev

∣∣∣∣ = 0. (B·21)

Assuming that the |ηµ| are small, we expand Λ(η) and λ(η) as Taylor series,

Λ(η) = Λ(0) +
∑
ν(>p)

∂Λ

∂ην
(0)ην + · · · ,

λ(η) = λ(0) +
∑
ν(>p)

∂λ

∂ην
(0)ην + · · · .

Λ(0) is expressed as

Λ(0) =

 Λ(H)
p 0p,u

0u,p 0u,u

 , (B·22)

where 0l,m is an l × m zero matrix and Λ(H)
p is the Hessian matrix for the Hopfield model,
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which is a p × p matrix. It is expressed as

Λ(H)
p =


1 − β〈〈 1

cosh2W(H) 〉〉 −β〈〈ξ1ξ2 1
cosh2W(H) 〉〉 · · · −β〈〈ξ1ξp 1

cosh2W(H) 〉〉
−β〈〈ξ2ξ1 1

cosh2W(H) 〉〉 1 − β〈〈 1
cosh2W(H) 〉〉 · · · −β〈〈ξ2ξp 1

cosh2W(H) 〉〉
· · · · · · · · · · · ·

−β〈〈ξpξ1 1
cosh2W(H) 〉〉 −β〈〈ξpξ2 1

cosh2W(H) 〉〉 · · · 1 − β〈〈 1
cosh2W(H) 〉〉


,(B·23)

where W (H) = β
∑p
ν=1 mν(H)ξν and mν(H)(ν = 1, · · · , p) is the stationary state of the Hopfield

model. Now, let us consider the situation that all the unlearning coefficients are of the same

order and assume ηµ = η̄µε (µ = p + 1, · · · , v), where ε is a small parameter, η̄µ = O(ε0), and

η̄µ > 0. The term of O(ε0) in Eq. (B·21) is h(0), which becomes

h(0) =
∣∣∣∣Λ(0) − λ(0)Ev

∣∣∣∣ =
∣∣∣∣∣∣∣∣ Λ

(H)
p − λ(0)Ep 0p,u

0u,p −λ(0)Eu,u

∣∣∣∣∣∣∣∣ (B·24)

=
∣∣∣∣Λ(H)

p − λ(0)E3

∣∣∣∣(−λ(0))u = 0. (B·25)

The solutions of
∣∣∣∣Λ(H)

p −λ(0)Ep

∣∣∣∣ = 0 are the eigenvalues of the stationary state for the Hopfield

model, and we denote them by λ(H)
i (i = 1, · · · , p). Thus, we have λi(0) = λ(H)

i (i = 1, · · · , p).

We denote other solutions as λν(0) = 0 (ν = p + 1, · · · , v). If the stationary state of the

Hopfield model is stable, λ(H)
i > 0 (i = 1, · · · , p). Thus, let us consider λν(η) (ν > p). Let us

define hν(η) as h(η) evaluated at λ = λν(η). Since the components of the (p + 1)th to the vth

rows of Λ(η) are of order ε or of order higher than ε, the lowest order of hν(η) is O(εu) and it

is given by ∂uhν
∂ηp+1···∂ηv

(0)η̄p+1 · · · η̄vε
u. ∂uhν
∂ηp+1···∂ηv

(0) is calculated as

∂uhν
∂ηp+1 · · · ∂ηv

(0) = (B·26)∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Λ
(H)
p 0p,u

β〈〈ξp+1ξ1 1
cosh2W(H) 〉〉 · · · β〈〈ξp+1ξp 1

cosh2W(H) 〉〉 −1 − ∂λν
∂ηp+1

0 · · · 0
...

...
...

...
. . . · · · 0

β〈〈ξvξ1 1
cosh2W(H) 〉〉 · · · β〈〈ξvξp 1

cosh2W(H) 〉〉 0 · · · 0 −1 − ∂λν
∂ηv

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣Λ(H)
p

∣∣∣∣ v∏
µ=p+1

(−1 − ∂λν
∂ηµ

). (B·27)

Since λ(H)
i > 0 (i = 1, · · · , p),

∣∣∣∣Λ(H)
p

∣∣∣∣ , 0 follows. Thus, we have

∂λν
∂ηµ

(0) = −1, µ = p + 1, · · · , v. (B·28)
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Therefore, up to O(ε), λν(η) is expressed as

λν(η) ' λν(0) +
v∑

µ=p+1

∂λν
∂ηµ

(0)ηµ = −
v∑

µ=p+1

ηµ. (B·29)

Next, let us calculate λ̂i(0). We rewrite Λ̂(η) as

Λ̂(η) =

 Λp(η) B(η)

C(η) D(η)

 , (B·30)

where Λp, B,C,D, and G are defined as(
Λp(η)

)
µν
= Λµν(η), µ, ν = 1, · · · , p, (B·31)

B(η) =


Λ1p+1(η) · · · Λ1v(η)

· · · · · · · · ·
Λpp+1(η) · · · Λpv(η)

 , p × u matrix, (B·32)

C(η) = Gu({− 1
ην
})


Λp+11(η) · · · Λp+1p(η)

· · · · · · · · ·
Λv1(η) · · · Λvp(η)

 , u × p matrix, (B·33)

D(η) = Gu({− 1
ην
})


Λp+1p+1(η) · · · Λp+1v(η)

· · · · · · · · ·
Λvp+1(η) · · · Λvv(η)

 , u × u matrix, (B·34)

Gu({− 1
ην
}) =


− 1
ηp+1

0 · · · 0

0 . . . · · · 0

0 0 · · · − 1
ηv

 , u × u matrix. (B·35)

Thus, we have

Λ̂(0) =

 Λ(H)
p 0pu

C(0) Eu

 . (B·36)

Now, let us solve the characteristic equation of Λ̂ for the stationary state studied above,

ĥ(η) ≡
∣∣∣∣Λ̂(η) − λ̂(η)Ev

∣∣∣∣ = 0. (B·37)

Let us expand Λ̂(η) and λ̂(η) as Taylor series,

Λ̂(η) = Λ̂(0) +
∑
µ>p

∂Λ̂

∂ηµ
(0)ηµ + · · · , (B·38)

λ̂(η) = λ̂(0) +
∑
µ>p

∂λ̂

∂ηµ
(0)ηµ + · · · . (B·39)
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The term of O(ε0) for Eq. (B·37) is

ĥ(0) =

∣∣∣∣∣∣∣∣ Λ
(H)
p − λ̂(0)Ep 0p,u

C(0) (1 − λ̂(0))Eu

∣∣∣∣∣∣∣∣ = 0. (B·40)

From this, we obtain ∣∣∣∣Λ(H)
p − λ̂(0)Ep

∣∣∣∣(1 − λ̂(0))u = 0. (B·41)

Therefore, we have ∣∣∣∣Λ(H)
p − λ̂(0)Ep

∣∣∣∣ = 0, (B·42)

1 − λ̂(0) = 0. (B·43)

The first equation is the characteristic equation for the Hopfield model, and we have

λ̂i(0) = λH
i > 0, i = 1, · · · , p. (B·44)

The second equation gives

λ̂ν(0) = 1, ν = p + 1, · · · , v. (B·45)

Therefore, for sufficiently small |ε |, i.e., |ε | � 1, we have

λ̂i(η) > 0, i = 1, · · · , v, (B·46)

and the stationary state is dynamically stable.

Therefore, for sufficiently small ε, we have

λ̂i(η) > 0 i = 1, · · · , v

λi(η) > 0 i = 1, · · · , p

λν(η) ' −
v∑

µ=p+1

ηµ, i = p + 1, · · · , v. (B·47)

Thus, we conclude that irrespective of the sign of ηµ, any stable stationary state of the Hopfield

model is statically and dynamically stable for sufficiently small |ε |. In particular, this holds

for ηµ = η for all µ.

Let us consider the breaking of stability when one of the η, say ηi, changes. For any

nonzero ε, it follows from Eq. (B·16) that
v∏

i=1

λ̂i(η) = [
v∏

j=p+1

(− 1
ηi

)]
v∏

i=1

λi(η). (B·48)

Let ηc(T ) be the value of ηi where the stationary state becomes statically unstable for the first

time when |ηi| is increased from 0 at a fixed temperature T . Similarly, let η̂c(T ) be the value
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of ηi where the stationary state becomes dynamically unstable for the first time when |ηi| is
increased from 0 at a fixed temperature T . Generically, only one of the λ, say λ j, changes its

sign. Therefore, at ηc(T ), λ j = 0. Here, we separately discuss the cases ηi < 0 and ηi > 0.

For the negative ηi, by Sylvester’s law of inertia, only λ̂ j becomes 0 at ηi = ηc(T ). Thus,

ηc(T ) = η̂c(T ) follows. On the other hand, for the positive ηi, from Eq. (B·48), generically,

only one of the λ̂, say λ̂k, changes its sign at ηi = η̂c(T ), and then ηc(T ) = η̂c(T ) follows.

Therefore, the stationary solution becomes unstable statically and dynamically at the same

time for positive and negative ηi in generic situations. This property is proved to hold when

ηµ = η for all µ by a similar argument.

In general, we cannot say anything about whether this unstable solution becomes stable

when ηi is further increased because eigenvalues other than λ j, λ̂ j, and λ̂k may change their

signs.

Appendix C: SPEs in the Case that the Single Mixed State is Unlearned

The SPEs for the solutions are given as follows.

(1) Hopfield attractor H. m2 = m3 = 0.

m1 =
1
4

(
3tanh[β(m1 − ηm4)] + tanh[β(m1 + ηm4)]

)
, (C·1)

m2 =
1
4

(
tanh[β(m1 − ηm4)] − tanh[β(m1 + ηm4)]

)
, (C·2)

m4 =
1
4

(
3tanh[β(m1 − ηm4)] − tanh[β(m1 + ηm4)]

)
. (C·3)

From the condition of m2 = 0, η = 0 follows. That is, the Hopfield attractor does not exist

when the unlearning term exists in the Hamiltonian.

(2) Mixed state M4, m1 = m2 = m3.

m1 =
1
4

(
tanh[β(3m1 − ηm4)] + tanh[β(m1 − ηm4)]

)
, (C·4)

m4 =
1
4

(
tanh[β(3m1 − ηm4)] + 3tanh[β(m1 − ηm4)]

)
. (C·5)

(3) Mixed state M5. m1 = m2(' −m3).

m1 =
1
4

(
tanh[β(2m1 + m3 − ηm4)] + tanh[β(2m1 − m3 − ηm4)]

)
, (C·6)

m3 =
1
4

(
tanh[β(2m1 + m3 − ηm4)] − tanh[β(2m1 − m3 − ηm4)]

+2tanh[β(m3 − ηm4)]
)
, (C·7)
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m4 =
1
4

(
tanh[β(2m1 + m3 − ηm4)] + tanh[β(2m1 − m3 − ηm4)]

+2tanh[β(m3 − ηm4)]
)
. (C·8)

From these equations, we note that m3 , −m1 unless η = 0.

(4) S2 state.

m1 =
1
4

(
tanh[β(m1 + 2m2 − ηm4)] + 2tanh[β(m1 − ηm4)]

+tanh[β(m1 − 2m2 + ηm4)]
)
, (C·9)

m2 =
1
4

(
tanh[β(m1 + 2m2 − ηm4)] − tanh[β(m1 − 2m2 + ηm4)]

)
, (C·10)

m4 =
1
4

(
tanh[β(m1 + 2m2 − ηm4)] + 2tanh[β(m1 − ηm4)]

−tanh[β(m1 − 2m2 + ηm4)]
)
. (C·11)

Appendix D: Stability Analysis of Solutions of SPEs When One Mixed State is Un-

learned

In the general case that f is a function of seven overlaps m1, · · · ,m7, we put Λµν =
∂2 f
∂mµ∂mν

. For µ = 1, · · · , 7 and ν = 1, · · · , 7, we obtain

Λµν =
∂2 f
∂mµ∂mν

= ζµ

(
δµν − βζν〈〈ξµξν

1
cosh2(β

∑7
τ=1 ζτmτξτ)

〉〉
)
. (D·1)

The characteristic equation of Λ ≡ {Λµν} is |Λ − λE| = 0. The boundary of a stable region for

any solution of the SPEs is determined by |Λ| = 0 because some eigenvalue becomes 0 at the

boundary. When only ξ4 is unlearned, we put ζ1 = ζ2 = ζ3 = 1, ζ4 = −η, and ζ5 = ζ6 = ζ7 = 0.

In this case, the elements of the Hessian matrix are

Λµν = δµν − β〈〈ξµξν
1

cosh2[β(
∑3
µ=1 mµξµ − η m4ξ4)]

〉〉, for µ, ν = 1, 2, 3, (D·2)

Λµ4 = βη〈〈ξµξ4 1
cosh2[β(

∑3
µ=1 mµξµ − η m4ξ4)]

〉〉, for µ = 1, 2, 3, (D·3)

Λ44 = −η − βη2〈〈 1
cosh2[β(

∑3
µ=1 mµξµ − η m4ξ4)]

〉〉. (D·4)

We below derive characteristic equations for the solutions of the SPEs.

(1) Hopfield attractor. We have

Λ11 = Λ22 = Λ33,Λ12 = Λ13,Λ24 = Λ34.
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The characteristic equation is

|Λ − λE| = {λ − (Λ11 + Λ12)}{λ3 + (Λ12 − 2Λ11 − Λ44)λ2

+(Λ2
11 − Λ11Λ12 − Λ44Λ12 + 2Λ11Λ44 − 2Λ2

12 − 2Λ2
24 − Λ2

14)λ

+(Λ12Λ11Λ44 − Λ2
11Λ44 − 4Λ12Λ24Λ14 + 2Λ2

12Λ44 + 2Λ2
24Λ11 − Λ2

14Λ12 + Λ
2
14Λ11)} = 0.

(D·5)

(2) P state. We have

Λ11 = Λ22 = Λ33 = 1− β,Λ44 = −η− βη2,Λ12 = Λ13 = Λ23 = 0,Λ14 = Λ24 = Λ34 =
1
2
βη.

Thus,

|Λ − λE| = (λ − Λ11)2{λ2 + (−Λ11 − Λ44)λ + Λ11Λ44 − 3Λ2
14} = 0. (D·6)

The solution of Eq. (D·6) is

λ1 = λ2 = Λ11, (D·7)

λ± =
1
2

(
Λ11 + Λ44 ±

√
(Λ11 − Λ44)2 + 12Λ2

14

)
. (D·8)

The stable region for the P state is determined by the conditions that λ1 ≥ λ2 ≥ λ3 > 0

and λ4 < 0 for η > 0, and that all λ are positive for η < 0. From this, the boundary of the

stable P state is given by

T = 1 for η > 0, (D·9)

η =
4T (1 − T )

4T − 1
for η < 0. (D·10)

(3) Mixed state M4.

Λ11 = Λ22 = Λ33,Λ12 = Λ13 = Λ23,Λ14 = Λ24 = Λ34.

|Λ − λE| = {λ − (Λ11 − Λ12)}2{λ2 − (Λ11 + Λ44 + 2Λ12)λ + 2Λ44Λ12 + Λ11Λ44 − 3Λ2
14} = 0.

(D·11)

(4) Mixed state M5.

Λ11 = Λ22 = Λ33,Λ13 = Λ23,Λ14 = Λ24,

|Λ − λE| = {λ − (Λ11 − Λ12)}{λ3 − (2Λ11 + Λ44 + Λ12)λ2

+(2Λ11Λ44 + Λ11Λ12 + Λ
2
11 + Λ44Λ12 − 2Λ2

13 − Λ2
34 − 2Λ2

14)λ

−Λ11Λ44Λ12 − Λ2
11Λ44 − 4Λ34Λ13Λ14 + 2Λ11Λ

2
14 + 2Λ44Λ

2
13 + Λ12Λ

2
34 + Λ11Λ

2
34} = 0.
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(D·12)

At the boundary, some λ becomes 0. That is,

Λ11 = Λ12, (D·13)

or

−Λ11Λ44Λ12 − Λ2
11Λ44 − 4Λ34Λ13Λ14 + 2Λ11Λ

2
14 + 2Λ44Λ

2
13 + Λ12Λ

2
34 + Λ11Λ

2
34 = 0.

(D·14)

(5) S2 state.

Λ11 = Λ22 = Λ33,Λ12 = Λ13,Λ24 = Λ34,

|Λ − λE| = {λ − (Λ11 − Λ23)}{λ3 − (2Λ11 + Λ44 + Λ23)λ2

+(2Λ11Λ44 + Λ11Λ23 + Λ44Λ23 + Λ
2
11 − 2Λ2

24 − 2Λ2
12 − Λ2

14)λ

−Λ23Λ11Λ44 − Λ2
11Λ44 − 4Λ12Λ24Λ14 + 2Λ11Λ

2
24 + 2Λ44Λ

2
12 + Λ

2
14Λ23 + Λ11Λ

2
14} = 0.

(D·15)

At the boundary, some λ becomes 0. That is,

Λ11 = Λ23 (D·16)

or

−Λ23Λ11Λ44 − Λ2
11Λ44 − 4Λ12Λ24Λ14 + 2Λ11Λ

2
24 + 2Λ44Λ

2
12 + Λ

2
14Λ23 + Λ11Λ

2
14 = 0.

(D·17)
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