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The invasion of air into porous systems in drying processes is often localized in soft materials,
such as colloidal suspensions and granular pastes, and it typically develops in the form of cracks
before ordinary drying begins. To investigate such processes, we construct an invasion percolation
model on a deformable lattice for cohesionless elastic systems, and with this model we derive the
condition under which cracking occurs. A Griffith-like condition characterized by a dimensionless
parameter is proposed, and its validity is checked numerically. This condition indicates that the
ease with which cracking occurs increases as the particles composing the material become smaller,
as the rigidity of the system increases, and as the degree of heterogeneity characterizing the drying
processes decreases.

PACS numbers: 46.50.+a,64.70.fm,81.05.Rm,83.80.Hj

I. INTRODUCTION

Contraction that results from drying often causes the
formation of cracks in pastelike materials such as wet
granular materials and colloid suspensions. Compared
with ordinary solids, such materials are soft in wet states
due to weak cohesion among constituent particles, and
they possess unique properties characterizing the crack
formation that they exhibit, including memory effects,
slow crack growth, and a diversity of crack patterns [1–
12]. Considerable effort has been devoted to investigat-
ing the formation of crack patterns in the contexts of
physics, soil mechanics, and geology, while cracking con-
ditions have been investigated mainly in engineering ap-
plications.
During a drying process, the first crack in a paste gen-

erally appears in a capillary state, in which all pores (i.e.,
the spaces between solid particles) are filled with liquid,
and the cracking process consists essentially of the in-
vasion of air into these pores. We believe that cracking
conditions can be deduced directly from material proper-
ties related to drying, because on the microscopic level,
cracking is indistinguishable from ordinary drying in the
elementary processes of air invasion. However, drying
and cracking have been treated separately in previous
theories, although some studies have investigated the ef-
fect of large deformation and the order of ordinary drying
and cracking in drying processes [13–17].
The main goal of this paper is to determine the Griffith

criterion associated with the drying process of cohesion-
less porous systems. For this purpose, we focus on the
limit of slow drying in a uniform elastic system. The slow
drying limit can be realized by decreasing the relative
humidity h quasistatically during the drying processes
with fixed temperature T and atmospheric pressure P .
Under such conditions, both the water distribution and
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elastic deformation of the material can be assumed to
be in thermal equilibrium or quasiequilibrium. We also
assume that the elastic relaxation is much faster than
the redistribution of liquid, and we ignore plasticity, al-
though it is believed to be important for many type of
pastes [4, 7, 8, 11, 12, 18–20].

To investigate the systems of interest, we extend an in-
vasion percolation (IP) model to include elastic interac-
tions. It has been established that IP models are faithful
models of drying processes in porous materials, despite
the great simplification they employ of treating liquid
distributions as binary distributions on a lattice [21–29].
Our extended model describes the cracklike invasion of
air in soft systems with large rigidity. With it, we de-
termine the condition for the formation of the first crack
in terms of the free energy of the system. This condi-
tion is determined from the elastic properties of the ma-
terial, the heterogeneity characterizing the drying pro-
cesses, and the size of particles forming the paste.

In this paper, we investigated a two-dimensional sys-
tem corresponding to a crosssection of a uniform layer
of paste. We regard the bottom surface to be a fixed
boundary and the top surface to be a free boundary and
assume that the evaporation of liquid occurs only from
the top surface. This paper is constructed as follows.
We propose a theoretical model based on thermodynamic
considerations in Sec. II. In Sec. III, we report the results
of numerical simulations using this model. We study the
conditions governing the invasion of air and the formation
of the first crack in Sec. IV and V, respectively. Conclu-
sions are given in Sec. VI.

II. SLOW DESICCATION IN COHESIONLESS
POROUS MATERIAL

We regard the system as a mixture of solid particles
and liquid forming a paste layer, and the environment as
air containing vapor, which exists both inside and outside
the paste layer. We treat this system and environment
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thermodynamically. In order to find the thermal equilib-
rium state for a given h with fixed (T, P ), we introduce a
free energy J ≡ F +P (Vs+Vl)−µv(T, P, h)Nl, where F ,
Vs, µv, Nl, and Vl are the Helmholtz free energy, the total
volume of the constituent particles, the chemical poten-
tial of the vapor, the number of liquid molecules, and the
volume of the liquid, respectively. We ignore the effect
of gravity and assume that Vs and Vl/Nl are constant.
The Helmholtz free energy, F , is given by the sum

F ≡ Fe + Fi + Fl. Here, Fe represents the deforma-
tion energy of the system, which results from interactions
among particles. The surface energy, Fi, is determined
by the liquid distribution and increases as the invasion
of air progresses, as shown in Appendix A. The free en-
ergy of the liquid, Fl, is given by Fl = −PlVl + µlNl,
as obtained from the Gibbs-Dühem relation, where Pl is
the hydrostatic pressure of the liquid, and the chemical
potential of the liquid, µl, is identical to µv. Substituting
these forms into the above expression for J , and defining
p ≡ P − Pl, we obtain

J ≡ Fe + Fi + p(T, P, h)Vl + const. (1)

The equilibrium state of the paste for given h is deter-
mined by minimizing J with respect to the other state
variables.
The difference between the hydrostatic pressure of the

fluid in the pores and the atmospheric pressure, p, is
called the negative pore pressure in soil mechanics. The
pressure p is uniform throughout the system in equilib-
rium states and determined uniquely by h for given T and
P , in accordance with the Kelvin equation, as indicated
in Appendix A. We adopt p as the control parameter in
place of h, because p corresponds to the driving force of
air invasion. In the processes we consider, p increases in
time, while h decreases as a function of p.
Here we give a brief remark concerning the minimiza-

tion of J for processes occurring at fixed p. First, we
note that even when p increases quasistatically, a region
into which air has invaded often expands abruptly, ex-
hibiting behavior similar to that in an avalanche process.
However, if the redistribution and desiccation of liquid
are sufficiently slow, such a process can still be regarded
as proceeding slowly, and, therefore, we can assume that
the system is approximately in mechanical equilibrium
throughout. While Vl decreases gradually, instantaneous
equilibrium states (characterized by instantaneous values
of Vl) can be obtained by minimizing F . Technically, this
implies that we can always use the minimum principle of
J by including Vl into the set of control parameters dur-
ing such a process, because the difference between J and
F , P (Vs+Vl)−µv(T, P, h(T, P, p))Nl, is constant if Vl is
fixed, in addition to (T, P, p).

A. Rigid materials

We use a regular lattice composed of M cells each of
volume ∆V to represent the system. The liquid distri-

bution on the lattice is described by the set of variables
{φ1, · · · , φM}, where φm represents the “dryness” of the
mth cell. Each cell is assumed to be either wet (φm = 0)
or dry (φm = 1), as in percolation models. In order for
such a treatment to be valid, we must assume that the
cells possess microscopic volumes. We adopt the length
of a cell as the unit of length in our model, which is
proportional to the linear extent of a particle, r, fixing
all other microscopic properties. In addition, we assume
that all wet cells have the same liquid volume fraction,
vw, and that no liquid exists in dry cells, for simplic-
ity. The volume occupied by solid particles in each cell
is (1− vw)∆V .

The total volume of liquid and surface energy are

Vl ≡
M∑

m=1

∆V vw(1− φm), (2)

and

Fi ≡ γla

M∑
m=1

∆Amφm + const., (3)

respectively, where γla is the surface tension of the liquid-
air interface. The quantity γla∆Am is the increase in the
surface energy needed to change the state of the mth cell
from wet to dry. This represents the resistance to drying.
In order to investigate heterogeneous material, we assume
that ∆Am varies among the cells, with an average value
∆A. The characteristic pressure in a drying process,

pγ ≡ γla
∆A

vw∆V
∼ γla

r
, (4)

is typically on the order of the surface tension divided by
r.

Because Fe is constant for rigid systems, we have

J =
M∑

m=1

[γla∆Amφm + pvw(1− φm)∆V ] + const. (5)

Introducing the quantities J̃ ≡ J/vwpγ , γm ≡ ∆Am/∆A,
and p̃ ≡ p/pγ , this expression can be written in the sim-
plified form

J̃ =
M∑

m=1

∆V {γmφm + p̃(1− φm)}, (6)

after removing the constant from J .
This free energy is minimized when the liquid distri-

bution satisfies the conditions{
φm = 0 for γm > p̃
φm = 1 for γm ≤ p̃

. (7)

If these conditions are applied only to cells adjacent to
the dry-wet interface, this process corresponds to that de-
scribed by the conventional IP model without a trapping
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rule [21–23]. In the present work, we assume that γm is
distributed uniformly over the interval [1 −∆γ, 1 +∆γ]
and that ∆γ � 1. For large systems, air invades when
p̃ ' 1 − ∆γ from the drying surface, and it percolates
above a certain threshold p̃ = pc < 1 + ∆γ, as is well
known.
Here, we note that the change of a state from wet to

dry is reversible and may be caused simply by the redis-
tribution of liquid, rather than desiccation, as observed
by L. Xu et al. [30]. Also, desiccation in the vicinity of
the free surface generally induces liquid flow which causes
the invasion of air far from this surface. Such flows are
often maintained in wet regions with high resistance to
drying and facilitate the drying processes [31].

B. Extension to elastic materials

We regard each cell as an elastic tile subject to uniform
strains, in order to describe the deformation of the sys-
tem. The elastic energy Fe is determined by the strains

as Fe{Um} ≡
∑M

m=1 ∆V fe(Um), where Um ≡ (u
(m)
αβ ) is

the strain tensor of the mth cell and fe is the free energy
density. In order to simplify the situation, we make the
following assumptions: (a1) all cells have the same elas-
tic properties, (a2) fe does not depend on φm, and (a3)
∆Am does not depend on Um. Heterogeneity is intro-
duced into the system only through the drying process.
Coupling of φm and Um is introduced through Vl. The

dilation of a cell results from the influx of liquid for a wet
cell and an influx of air for a dry cell. To account for such

phenomena, we add the volumetric strain u
(m)
αα to vw in

Eq. (2). This yields the free energy

J = Fe{Um}+
M∑

m=1

[γla∆Amφm

+p(vw + u(m)
αα )(1− φm)∆V ] + const, (8)

where Einstein’s summation rule is applied to repeated
Greek indices. Then, introducing Ũm ≡ Um/vw and

f̃e(Ũm) ≡ fe(Um)/vwpγ , we obtain

J̃ =

M∑
m=1

∆V {f̃e(Ũm)+γmφm+p̃(1+ũ(m)
αα )(1−φm)}. (9)

We note that the assumption (a3) can be weakened
slightly in the case that ∆Am depends on Um linearly

as ∆Am = ∆A(γm + γ′ũ
(m)
αα ), where γ′ is a constant, be-

cause an expression identical to Eq. (9) can be obtained
through an appropriate transformation of the variables.
With the elastic energy included, the conditions to de-

termine the liquid distribution are revised from those ap-
pearing in Eq. (7) to{

φm = 0 for γm > p̃(1 + ũ
(m)
αα )

φm = 1 for γm ≤ p̃(1 + ũ
(m)
αα )

. (10)

These conditions imply that the resistance to drying de-
creases as a cell expands, because the expansion of a cell
decreases the cost in surface energy required to remove a
unit volume of liquid.

The free energy has a minimum with respect to {Ũm}
in the equilibrium state. Minimizing Eq. (9) in the con-
tinuum limit gives the stress balance equation

∂σ̃αβ

∂xβ
= 0, (11)

where xβ represents the space coordinates and the
stresses σ̃αβ are defined by

σ̃αβ ≡ ∂f̃e
∂ũαβ

+ p̃(1− φ)δαβ . (12)

Solid particles in wet regions are subject to compressive
pressure p̃ from both the free surface and the interface
with dry regions.

C. Elastic energy of cohesionless materials

Soft materials that exhibit drying cracks, such as col-
loid suspensions and wet granular materials, generally
have nonlinear elastic properties. In many cases, the co-
hesive interactions of the constituent particles are very
weak in comparison with excluded volume interactions,
and materials in capillary states hold their shape under
compressive stresses caused by negative pore pressures.
[32] The elastic energy and moduli practically vanish un-
less the system is subject to compressive stresses. There-
fore, we assume that f̃e(Ũ) = 0 for ũαα ≥ 0 and that the
elastic moduli vanish for ũαα = 0.

We need to choose an appropriate function of f̃e(Ũ)
for ũαα < 0, because there is no established general
constituent relation. If we assume an isotropic ana-
lytic function for the elastic moduli, f̃e can be approx-
imated in the form of a third-order elasticity as f̃e =
−λũ3

αα − µũξξũ
2
αβ for small ũαα, where λ and µ are pos-

itive constants. L. Goehring reported that this third-
order elasticity accurately describes the results of com-
pression tests with cornstarch paste [33]. Another choice

is f̃e =
√
−ũξξ(λũ

2
αα + µũ2

αβ), which is obtained theo-
retically by assuming Hertzian contacts among particles
and affine deformation [16, 34].

We assume the following general homogeneous form
including these choices:

f̃e(Ũ) = g(ũξξ)

[
1

2
K̃ũ2

αα + G̃

(
ũαβ − 1

2
ũηηδαβ

)2
]
,

(13)

where K̃ and G̃ are positive constants. The function g(x)
takes the power-law form

g(x) =

{
(−x)ν−1 x < 0
0 x ≥ 0

, (14)
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FIG. 1. Triangular lattice with Nx × Ny vertices and M =
2Ny(Nx−1) cells. The x-axis is normal to the surfaces of the
system, with the value of x representing the distance from the
top surface. Dry cells are enclosed by bold lines.

where ν = 2 for third-order elasticity and ν = 3/2 in
the case of Hertzian contacts. The bulk modulus and
rigidity depend on the state of the material, due to the
nonlinearity. As shown in Appendix B, they are pro-
portional to g(ũαα) for isotropic compressive states, and

2G̃ < ν(ν +1)K̃ is required for most materials with pos-
itive Poisson’s ratio. We investigated our model mainly
for large K̃, as Eq. (13) generally holds for small defor-
mations.

III. NUMERICAL SIMULATIONS

A. Methods

We consider a uniform layer from whose top surface
(which is a one-dimensional interface) liquid is desic-
cated. We carried out numerical simulations using third-
order elasticity (ν = 2) on a two-dimensional triangular
lattice, as shown in Fig. 1. The lattice has Nx × Ny

vertices, and the layer thickness is H ≡
√
3(Nx − 1)/2.

In order to avoid erroneous numerical convergence due
to the singularity at ũαα = 0 for g′(x), we used the
smooth function

g(x) =

 −x for bx < −1
1
4b (bx− 1)2 for |bx| ≤ 1
0 for bx > 1

, (15)

with a large positive constant b = 104, instead of the
form given in Eq. (14).
The numerical method we used is essentially the same

as that used in Ref. [35]. The deformation of the lat-
tice is described by the displacements of the vertices,
{u1, · · · ,uN} (N ≡ NxNy), which determine {Ũm}. The
top surface is a free boundary in contact with air. The in-
terface between air and wet cells is treated as the dry-wet
interface. The bottom surface is a fixed boundary with
respect to {un} and a reflecting boundary with respect
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FIG. 2. The drying process following the cracklike invasion
of air. The graph displays the results for the dry fraction φ
and the maximum depth of a dry cell, Xmax, as functions
of p̃ obtained from a numerical simulation with (K̃, G̃) =
(105, 2 × 104), ∆γ = 0.001, and Nx = Ny = 80. The bottom
snapshots correspond to (p̃− 1)/∆γ = 1.19 and 2.79.

to {φm}. Periodic boundary conditions are used along
the y direction. The following procedures were repeated
in the numerical simulations from the initial conditions
in which all cells were wet and undeformed.

(P1): The displacements {un} were calculated by min-

imizing J̃ for fixed {φm} and p̃ in Eqs. (9) and
(13) using the conjugate gradient method [36].

(P2): The conditions (10) were checked for all cells con-
tacting the dry-wet interface. If these conditions
were satisfied, we increased p̃ by ∆p̃ and then re-
turned to (P1).

(P3): If the mth cell did not satisfy these conditions,
we changed φm from wet (dry) to dry (wet) and
returned to (P1).

In (P3), if we found more than one cell that did not sat-
isfy the conditions (10), we changed only the state of the
most unstable cell, i.e., that with the largest deviation

from the condition γm = p̃(1 + ũ
(m)
αα ). Under this proce-

dure, Vl changes gradually for fixed p̃. In the simulations
whose results are presented here, we used ∆p̃ = ∆γ/500,
and the tolerance of the conjugate gradient method was
3 × 10−11. The numerical results were confirmed to be
essentially the same with those obtained for smaller ∆p̃
and tolerance.
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FIG. 3. Snapshots of air invasion for ∆γ = 0.001, K̃ = 103, 104, 105 and G̃/K̃ = 0.02, 0.1, 0.5. In all cases, Nx = Ny = 80. The
number appearing in each figure indicates the value of (p̃ − 1)/∆γ for that snapshot. The deformation of the lattice is scaled
by a factor of 5 for viewability, and the volumetric strain ũαα is indicated by the gray scale, which corresponds to the interval

[Ũi −∆U, Ũi +∆U ], where Ũi is given by Eq. (20) and ∆U = 1/(6
√

10K̃).

B. Results

Our numerical results indicate that the cracklike in-
vasion of air occurs readily in soft systems with large
rigidity and small heterogeneity.

Figure 2 depicts a typical process of cracklike inva-
sion and subsequent drying. As soon as a cell on the
top surface dries, air penetrates rapidly into the bulk
and this results in the formation of a one-dimensional
dry region. This dry region expands gradually from
both the top surface and the crack line as p̃ increases.
The graph in this figure plots the fraction of the entire

system in the dry region, φ ≡
∑M

m=1 φm/M , and the
maximum depth of a dry cell divided by the thickness,
Xmax ≡ maxm {xm|φm = 1}/H, as functions of p̃. It is
found that soft material resists the invasion of air through
shrinkage. When shrinkage occurs, the pressure required
for air invasion to begin is larger than that in the case
of the conventional IP model, p̃ ' 1−∆γ. On the other
hand, the percolation threshold decreases drastically if
the cracklike invasion of air occurs.

Figure 3 displays typical snapshots for nine sets of
(K̃, G̃) and fixed ∆γ. These were taken after a dry re-
gion had developed beyond a depth of approximately half
of the total depth. For sufficiently large K̃ or small G̃,
the air invasion process occurs in the same manner as for
the conventional IP model. It always occurs at G̃ = 0
for any value of K̃, as described below. The dry region
expands intermittently and gradually as the pressure p̃
increases. Contrastingly, for large G̃ and small K̃, crack-
like air invasion occurs first. This dry region essentially
corresponds to a mode I crack, because the cells in this re-
gion are expanded (i.e., ũαα > 0), while the surrounding

wet region shrinks. For sufficiently large G̃ and small K̃,
however, shear bands (mode II cracks) often form ahead
of cracks in the wet region. The directions of the shear
bands reflect the anisotropy of the triangular lattice. The
wet cells in such shear bands expand until ũαα ' 0, and
cracklike air invasion develops along shear bands. Shear
bands sometimes appear and disappear during the inva-
sion of air.

Figure 4 elucidates the dependence of the heterogene-
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ity for fixed (K̃, G̃). As ∆γ increases, the air invasion
process changes from cracklike to conventional IP-like.
The value of ∆γ at which this change occurs depends on
(K̃, G̃), as discussed in Sec. V.
The transition between cracklike and conventional IP-

like invasion has been reported for some heterogeneous
systems with long-range interactions [37, 38]. In partic-
ular, R. Holtzman et al. investigated the displacement
of immiscible fluid in preloaded granular systems and re-
ported three types of invasion: fracturing, capillary fin-
gering (CF) , and viscous fingering(VF) [39, 40]. Frac-
turing and CF in their systems correspond to cracklike
and conventional IP-like invasions, respectively, although
loading arises from increasing negative pore pressures in
our systems. VF is caused by the effect of pressure gradi-
ent. Although it does not occur in the slow drying limit,
the gradient of negative pore pressures becomes impor-
tant for fast drying and results in directional cracking
generally [11, 41].

IV. INVASION OF AIR

When the invasion of air does not occur yet, the system
is uniform and contracts only along the x direction as p̃
increases with drying. Such uniaxial compressive states
are described by φ = 0 and

(ũαβ) =

(
Ũa 0
0 0

)
≡ Ũa, (16)

where Ũa is determined from the free boundary condition
σ̃xx = ∂f̃e/∂Ũa + p̃ = 0 on the top line. Substituting

these values into Eqs. (13) and (14), we obtain f̃e =

(K̃ + G̃)(−Ũa)
ν+1/2 and then

Ũa = −
{

2p̃

(ν + 1)(K̃ + G̃)

} 1
ν

and f̃e(Ũa) = − 1

ν + 1
p̃Ũa.

(17)
If the top surface is sufficiently long, the invasion of air

begins when the second condition in (10) holds at a cell
on the surface for which we have

1−∆γ = p̃(1 + Ũa), (18)

because the smallest γm is 1−∆γ. The pressure at which
the invasion of air begins is determined by this condition
and increases as K̃+G̃ decreases. Because the right-hand
side of Eq. (18) has a maximum at Ũa = −ν/(ν+1), the
invasion of air never occurs for systems so soft that the
condition

K̃ + G̃ < 2

(
1 +

1

ν

)ν

(1−∆γ) ' 2

(
1 +

1

ν

)ν

(19)

holds. This case corresponds to wet sintering in this sys-
tem [1, 13–16].

Let us first consider a drying process for G̃ = 0, that
is, the case with no rigidity. In this case, the system
does not exhibit cracking and dries in the same manner
as in the conventional IP model. We can solve the stress
balance equation (11) easily in the case G̃ = 0, and we
obtain isotropic stress states with σ̃αβ = 0 and

ũαα = −
{

2p̃

(ν + 1)K̃

} 1
ν

≡ Ũi (20)

for all wet cells and ũαα ≥ 0 for dry cells. The elastic
energy of a wet cell is the same as that of a cell in the
isotropic compressive state,

f̃e(Ũi) = − 1

ν + 1
p̃Ũi, where Ũi ≡

Ũi

2

(
1 0
0 1

)
. (21)

The pressure at which the mth cell is allowed to dry
is determined from γm = p̃[1 + Ũi(p̃)], in accordance
with the conditions in (10), along with the condition

Ũi > −ν/(ν + 1). Because the pressure always increases
monotonically as γm increases, the order of drying does
not depend on K̃.

The above conclusion concerning the nature of the dry-
ing can also be obtained by considering the free energy,
J . To show this, we first note that additional energy is re-
quired to dry cells on an elastic lattice, because the elastic
energy stored in a cell is dissipated quickly through di-
lation following drying. In order to develop a dry region
D for a fixed value of p̃, the amount by which the free
energy J̃ decreases must be larger than the dissipation,

R ≡
∑
m∈D

∆V f̃e(Ũ
(dry)
m ), (22)

where Ũ
(dry)
m is the strain on the mth cell at the time

that it changes from wet to dry. This condition can be
written

J̃(p̃; ∅)− J̃(p̃;D)−R =
∑
m∈D

∆V
(
p̃(1 + Ũi)− γm

)
> 0,

(23)

because fe(Ũ
(dry)
m ) = fe(Ũi), and Eq. (9) can be rewrit-

ten as J̃(p̃;D) =
∑

m/∈D ∆V
{
f̃e(Ũi) + p̃(1 + Ũi)

}
+∑

m∈D ∆V γm, where D = ∅ (empty set) corresponds
to the initial state, in which all cells are wet. When the
invasion of air begins with the condition (18), the right-

hand side is negative, because p̃(1 + Ũi) = 1−∆γ < γm.
Therefore, the dry region can expand only in a step-by-
step manner with increasing p̃, and, hence, there is no
cracking.

V. CRACKING

A. Fracture criterion for the first crack

Next, we consider the case G̃ 6= 0 and investigate the
cracking condition. Cracking in our system consists of a
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FIG. 4. Snapshots of air invasions for ∆γ = 0.001, 0.01, 0.1 and fixed (K̃, G̃) = (104, 103). These snapshots are displayed in the
same manner as those in Fig. 3. In all cases, Nx = Ny = 80. The number in each figure indicates the value of (p̃− 1)/∆γ for
the respective values of ∆γ.

quasi-one-dimensional invasion of air. It is facilitated by
the release of energy from a surrounding wet region. Just
as in the situation considered in the previous section, a
crack develops if the amount by which the free energy
J̃ decreases is larger than the dissipation R when the
invasion of air begins.
If there appears a crack of length L that is perpen-

dicular to the free surface in a sufficiently large system
with fixed p̃, this crack forms an air-invaded region D
and it causes the elastic energy stored in D to dissipate
locally. The wet region S surrounding the crack, from
which the elastic energy is released, has an area of ap-
proximately L × L, because L is the only characteristic
length in this system. The states in this region change
from the uniaxial compressive state, characterized by Ũa,
to an approximately isotropic compressive state, charac-
terized by Ũi. Measuring L by the number of cells in D,
the decrease of J̃ is estimated as

J̃(p̃; ∅) − J̃(p̃;D)

' L2∆V
{
f̃e(Ũa)− f̃e(Ũi) + p̃(Ũa − Ũi)

}
+ L∆V

{
f̃e(Ũa) + p̃(1 + Ũa)− γD(L)

}
, (24)

where the average of γm in D is represented by

γD(L) ≡ 1

L

∑
m∈D

γm. (25)

The elastic energy of the mth cell in D, fe(Ũm), dis-

sipates with drying at γm ' p̃(1 + ũ
(m)
αα ). A cell is de-

formed at a crack tip and expands by at least an amount

ũ
(m)
αα − Ũa ' (γm − 1 + ∆γ)/p̃ = O(∆γ) in comparison

with Eq. (18). However, as shown in Appendix C, the

energy in this case is the same as fe(Ũa) to first order in
∆γ, because the cell contacts a dry-wet interface. Thus,
the minimum dissipation for air invasion is

R = L∆V f̃e(Ũa) +O((∆γ)2). (26)

The cracking condition J̃(p̃; ∅)− J̃(p̃;D)−R > 0 for fixed
p̃ and D is approximated as

L
{
f̃e(Ũa)− f̃e(Ũi) + p̃(Ũa − Ũi)

}
>∼ γD(L)− p̃(1 + Ũa) = γD(L)− 1 +∆γ, (27)

where we have used Eq. (18). The right-hand side of this
expression is positive and order ∆γ. The cracking condi-
tion of the system is determined by finding the minimum
value of γD(L) over all possible crack paths D. This
yields

L
{
f̃e(Ũa)− f̃e(Ũi) + p̃(Ũa − Ũi)

}
>∼ c(L)∆γ, (28)

where c(L)∆γ ≡ minD (γD(L)− 1 +∆γ). The quantity
c(L) increases from c(1) ' 0 to a value less than 1 as L
increases.

The condition derived above corresponds to the Grif-
fith criterion for the first crack in a drying process. It
indicates that there is a critical crack length L = Lc be-
yond which unstable crack growth occurs. The left-hand
side of Eq. (28) is the energy released when the crack ad-
vances by one cell. The right-hand side, c(L)∆γ, is the
additional energy required to dry a cell at a crack tip.
The critical length, Lc, is determined by the nondimen-
sional parameter

Γ ≡ ∆γ
{
f̃e(Ua)− f̃e(Ũi) + p̃(Ũa − Ũi)

}−1

(29)

as Lc = c(Lc)Γ. Substituting Eqs. (17), (20) and (21)
into Eq. (29), we obtain

Γ =

(
1 +

1

ν

)
∆γ

p̃(Ũa − Ũi)
=

K̃
1
ν ∆γ

gν

(
G̃
K̃

)
p̃1+

1
ν

, (30)

where

gν(x) ≡
(

2

ν + 1

)1+ 1
ν ν

2

{
1− (1 + x)−

1
ν

}
. (31)
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FIG. 5. Dependence of ∆X on X0 for K̃ = 1000 and ∆γ =
0.001. The results for each value of G̃ were calculated from
the average of X1 over eight numerical simulations on a lattice
with Nx = Ny = 40. The error bars for the plots with G̃ = 20
and 200 are omitted for clarity.
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FIG. 6. Dependence of α′ on 1/G̃ for various K̃ and
∆γ. These results were obtained by applying a least-square
method to a log-log plot of∆X andX0 forX0 < 1 to calculate
α′.

The quantity gν(x) is an increasing function of x and
is approximately proportional to x/2 for x � 1. From

Eq. (18), we find p̃ ' 1 for K̃ � 1 and ∆γ � 1.

B. Verification in numerical simulations

In order to verify the criterion appearing in Eq. (28) on
the basis of our numerical simulations, it is necessary to
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FIG. 7. Dependence of α′ on Γ. The data in Fig. 6 are
replotted with respect to Γ, defined in Eq. (30).

quantify the transition from the invasion of the conven-
tional IP model to cracklike invasion in the initial stage.
We calculated the quantities

Xk ≡ 1

Ny

M∑
m=1

xk
mφm (32)

for k = 0 and 1 and investigated the dependence of∆X ≡√
2X1 −X2

0 on X0.
The conventional IP model is characterized by the self-

affine growth of a dry-wet interface. Assuming the in-
terface to be a single-valued function x = h(y) in the

initial stages, the standard deviation
√
〈(h− 〈h〉)2〉 in-

creases as a power function of the average height 〈h〉,
where 〈·〉 represents the average over y. Because φm = 1
for 0 ≤ xm < h(y), the standard deviation corresponds to

∆X, as we have X1 ' 〈
∫ h

0
dxx〉 = 〈h2〉/2 and X0 ' 〈h〉.

Contrastingly, in a cracklike process,
√
X1 and, hence,

∆X are proportional to X0, because in such a process, a
one-dimensional dry region develops. Figure 5 displays a
typical dependence of∆X onX0. As seen there, the inva-
sion changes from that described by the conventional IP
model to cracklike invasion as G̃ increases. The exponent
α′, defined by ∆X ∝ Xα′

0 at X0 ' 0, is approximately
0.5 for the invasion of the conventional IP model and 1
for cracklike invasion.

Figure 6 displays the exponent α′ as a function of 1/G̃

for various K̃ and ∆γ. The change of α′ from 1.0 to 0.5
corresponds to the transition of the invasion type. The
data are replotted with respect to Γ in Fig. 7. It is seen
that all data approximately collapse to a single curve for
large K̃, and the transition occurs at approximately the
same value of Γ in each case, near Γ ' 10. This result is
consistent with the criterion appearing in Eq. (28) and
indicates that Lc/c(Lc) ' 10 in our simulations.
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FIG. 8. L/c(L) for a triangular lattice of Nx = Ny = 40. The
quantity c(L) used here is the average over 100 sets of {γm}
created from different random seeds. The inset displays an
example of a one-dimensional path with length L = 11.

The function c(L) is determined from the distribution
function of γm and the lattice properties. Investigating
all one-dimensional paths of length L, extending from the
top surface in the x direction, we determined c(L) from
the minimum value of the sum of γm over a path. Fig-
ure 8 displays L/c(L) for the Nx = Ny = 40 triangular
lattice we used. It is seen that, because c(L) increases
with L from ' 0 at L = 1, L/c(L) first decreases and
then increases as L increases from 1. For the portion
of this graph in which L/c(L) is increasing, the value of
L along the curve is Lc, the crack length beyond which
a crack grows unstably. For the portion of this graph
in which L/c(L) is decreasing, the value of L along the
curve corresponds to the depth of the dry region that de-
velops following the first invasion due to heterogeneity.
The minimum of c(L)/L corresponds to the transition
point of Γ below which Lc vanishes and the first inva-
sion spontaneously induces an initial crack that develops
into cracklike invasion. The value found here for Γ is
consistent with Γ ' 10, obtained from Fig. 7.

The quantity Γ generally depends on the particle size.
In the original, unscaled system, (K̃, G̃) correspond to

(K,G) ≡ (pγ/v
ν
w)(K̃, G̃). For fixed elastic properties,

represented by (K,G) and heterogeneity, represented by
∆γ, we find from Eq. (4) that Γ given in Eq. (30) with
p̃ ' 1 increases with the size of a particle as

Γ ' vwp
− 1

ν
γ

∆γK
1
ν

gν
(
G
K

) ∝ r
1
ν . (33)

This implies that cracking occurs only when the particle
size is small. Similar results have been reported previ-
ously in some experiments [30].

C. Discussion on the validity

We now discuss the validity of the cracking criterion
given in Eq. (28). This criterion seems valid for large

K̃, even when shear bands appear in advance of the first
crack. This is because this crack will simply follow the
path of the shear band. Most of the difference in the
free energy is consumed when the shear band forms, be-
cause a shear band enables compression in the surround-
ing region, due to the large strain it creates. By contrast,
cracks tend to become wide for sufficiently soft materials.
This is due to the fact that if a one-dimensional crack
were to develop in such materials, the large expansion
at a crack tip would cause additional dissipation, larger
than O((∆γ)2), in Eq. (26). The dependence of α′ on Γ
seen in Fig. 7 deviates from the master curve for small
K̃, because we assumed a crack to be a one-dimensional
region when we derived our criterion. In order to gener-
alize our criterion to be applicable to such cases, we need
to evaluate elastic strains at the tip of a blunt crack.

Cracking in pastelike materials is often accompanied
by large plastic relaxation [11] although we have ignored
plasticity to elucidate the Griffith criterion in this paper.
Plastic deformation would increase additional dissipation
significantly. If plastic deformation occurs locally in the
vicinities of crack tips, our criterion could be extended to
include dissipation energy in the same manner as in the
standard fracture mechanics [42]. For pastelike materials,
however, we should note that plastic deformation may
occur globally by increasing negative pore pressures [8]
and affect crack directions through the memory effects [4,
12].

We have investigated the first crack appearing in a
uniform layer without initial cracks or flaws, except mi-
croscopic heterogeneity of drying properties. As Γ does
not depend on the layer thickness H in Eq. (33), our
results appear to contradict the existence of the critical
cracking thickness. However, if the layer contains an ini-
tial crack or a macroscopic air-invaded region initially, it
can develop and divide the system at smaller values of
p̃. When p̃ is very small, the last term in Eq. (24) can
be approximated as L∆V {−γD(L)}, and the dissipation
term can be ignored. In this case, the cracking condition
can be written

L
{
f̃e(Ũa)− f̃e(Ũi) + p̃(Ũa − Ũi)

}
>∼ γD(∞), (34)

because γD(L) is approximately constant for L � 1. As-
suming L to be the layer thickness, H, this condition
gives

p̃ '

K̃
1
ν γD(∞)

gν

(
G̃
K̃

)
H

 ν
ν+1

(35)

as the smallest value of the pressure for which cracking
can occur. For the original, unscaled system, we have
p ∝ H− ν

ν+1 , and p does not depend on r, because H
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is scaled by the unit of length, which is proportional
to r. These dependencies are consistent with the the-
oretical and experimental results obtained in previous
research [13, 15, 17, 43].

VI. CONCLUSIONS

We proposed an invasion percolation model for a co-
hesionless elastic material to investigate drying processes
of pastelike materials. We derived a cracking condition
that applies to cohesionless porous systems taking the
same form as the Griffith criterion, after eliminating lo-
cal dissipation accompanied by air invasion. The Griffith
energy corresponds to an additional energy required for
drying, not the surface energy of the liquid-air interface
itself. We find that cracklike air invasion occurs for soft
materials with larger rigidity and less heterogeneity in
the properties characterizing the drying process. Also,
this criterion explains why cracking does not occur for
systems composed of large particles.
For systems in which there is fast drying or large de-

formation, the cracking condition will differ from that
derived here, because in such situations, there are compli-
cations that were not accounted for in the present work.
Specifically, in the case of fast drying, the pore pressure
will become nonuniform, while in the case of larger de-
formation, plastic deformation will appear. While it is
important to elucidate such phenomena, these problems
are beyond the scope of the present work.
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Appendix A: Equilibrium conditions

Let us consider thermal equilibrium states of a paste
system for given (T, P, h), where the relative humidity,
h, is given by h ≡ Pv/P

∗
v , where Pv is the vapor pressure

and P ∗
v is its saturated value. We assume that both the

particles and the liquid composing the system are incom-
pressible and that the vapor is an ideal gas, for simplicity.
A condition of mechanical equilibrium, Laplace’s law,

states that the liquid pressure, Pl, and the atmospheric
pressure, P , are related as

p ≡ P − Pl = γlaκ. (A1)

Here γla is the surface tension of the liquid-air interface
and κ is the mean curvature, which is constant every-
where on the liquid-air interface in an equilibrium state.

The negative pore pressure p is determined from h by
the Kelvin condition,

p = −kBTρl log h, (A2)

for an ideal gas, where kB is Boltzmann’s constant and
ρl ≡ Nl/Vl is the number density of liquid molecules.
This equation is derived from the chemical equilibrium
condition µl(T, Pl) = µv(T, Pv) and the condition for a
flat interface, µl(T, P ) = µv(T, P

∗
v ), which provides the

definition of P ∗
v . In the derivation of Eq. (A2), the rela-

tions ∂µl/∂Pl = 1/ρl and µv = kBT logPv + const. have
been used.

Another mechanical equilibrium condition, Young-
Dupré’s law,

γla cos θ = γsa − γsl, (A3)

holds at the contact points of the liquid-air interface
and the surfaces of solid particles. Here, θ is the con-
tact angle. The interface energy of the paste is the
sum of the surface energies of the liquid-air, solid-air,
and solid-liquid interfaces. Explicitly, we have Fi =
γlaAla + γsaAsa + γslAsl, where Amn and γmn are the
surface area and the surface tension of the interface indi-
cated by their indices, respectively. As the total area of
the solid surfaces, Asa + Asl, is approximately constant,
Fi can be written as

Fi = γlaA+ const., (A4)

where A ≡ Ala + cos θAsa, after substituting Eq. (A3).
The invasion of air causes A and thus Fi to increase.

Appendix B: Isotropic compressive states

The free energy J̃ of a wet cell is minimal with respect
to ũαβ in the isotropic compressive state. For Eqs. (13)

and (14), J̃ depends on ũαβ as

f̃e+p̃ũαα =
1

2
(K̃−G̃)(−ũαα)

ν+1+G̃(−ũηη)
ν−1ũ2

αβ+p̃ũαα.

(B1)
When the strain tensor deviates from that of an isotropic
state by Uαβ , taking the form ũαβ = Ũi (δαβ/2 + Uαβ),
this equation can be approximated to second order in
Uαβ as

f̃e + p̃ũαα

' const. +

{
p̃− ν + 1

2
(−Ũi)

νK̃

}
ŨiUαα

+ (−Ũi)
ν+1

{
(ν + 1)νK̃ − 2G̃

4
U2
αα + G̃U2

αβ

}
.(B2)

Applying the condition that this quantity be minimal
gives Eq. (20) and K̃, G̃ > 0. The bulk modulus
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and rigidity in 2D linear elasticity are K̃ ′ ≡ (ν +

1)ν(−Ũi)
ν−1K̃/2 and G̃′ ≡ (−Ũi)

ν−1G̃, respectively, for
the isotropic compressive state. Poisson’s ratio is given
by (K̃ ′ − G̃′)/(K̃ ′ + G̃′).

Appendix C: Perturbation from a uniaxial
compressive state

A wet cell in contact with a dry-wet interface has the
same stress conditions, σ̃xx = σ̃xy = 0, as the unixaial

compressive state, described by Ũa given in Eq. (16),
where the x axis is perpendicular to the interface, while
the stress σ̃yy depends on the volumetric strain, ũαα.

The elastic energy is f̃e(Ũ) = f̃e(Ũa)+σ̃eαβ(Ũa)δũαβ+

O(δŨ2) for Ũ ≡ Ũa + δŨ , where σ̃eαβ ≡ ∂f̃e/∂ũαβ =
σ̃αβ − p̃δαβ . The first-order term can be rewritten as

σ̃eαβδũαβ =
1

ν
ũαβδσ̃eαβ

=
1

ν
(ũxxδσ̃exx + ũxyδσ̃exy + ũyyδσ̃eyy),(C1)

because f̃e = σ̃eαβ ũαβ/(ν + 1) for the homogeneous

function given in Eq. (14) and df̃e = σ̃eαβdũαβ =
(σ̃eαβdũαβ + dσ̃eαβũαβ)/(1 + ν). Equation (C1) van-
ishes, because δσ̃exx = δσ̃exy = 0 for fixed p̃, due to

the stress conditions and ũyy(Ũa) = 0. Thus, we have

f̃e(Ũ)− f̃e(Ũa) = O(δŨ2) and

σ̃eαβδũαβ = −p̃δũxx + σ̃eyyδũyy = 0. (C2)

The quantity δŨ is determined from Eq. (C2) and δσ̃xy =
0 for a given δũαα = δũxx + δũyy, and thus we find

f̃e(Ũ)− f̃e(Ua) = O((δũαα)
2). (C3)
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