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The Creation Process of Faults in Quasi-static Deformation

S. Kitsunezaki, A. Kurumatani

Abstract We investigated quasi-static deformation pro-
cesses of granular systems both by experiments and
numerical calculations. We simulated the deformation of
a regular arrangement of particles using the discrete ele-
ments method and found that the initial deformation
of the granular system causes the formation of micro-
scopic shear zones through a fingering-like instability of
the stress field. These microscopic shear zones propagate
as their localized strain increases in magnitude and then
evolves into macroscopic faults. The picture of a fingering-
like instability is consistent with our experimental results
concerning the creation sequence and spacing of faults
appearing in a granular system contained in a V-shaped
container.

Keywords Quasi-static deformation, Shear zones, Faults,
Sand box experiments, Fingering instability

1
Introduction

Static and dry granular systems, which are composed
of cohesionless particles with frictional interactions, dif-
fer greatly from ordinary solids with regard to statistical
properties of stresses [1-6]. Tt is well known from stud-
ies of sandpiles that the spatial distribution of stresses
depends on the history of the formation of a sample [7].
Another important hysteretic phenomenon is the forma-
tion of shear bands, or faults [8-17]. The creation of faults
is thought to result from the growth of microscopic heter-
ogeneity in granular systems [14-17].
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In this paper, we study shear bands in a granular
system subject to the quasi-static deformation of its con-
tainer. Such experiments are called “sand box experi-
ments” in geophysics. Systems of this type have been
studied as simple models of geological faults [18-23]. As a
general result of sand box experiments, it is known that
several parallel slip planes are created in a granular sys-
tem when one of the lateral walls of its container is moved
slowly. In Section 2, we report the results of our simple
“sand-box” experiments for comparison to the numerical
simulations described subsequently. In our experiments,
we used nearly mono-disperse glass beads and a V-shaped
container instead of a box in order to apply a uniform
shear strain to the granular system [24]. We investigated
the dependences of the spacing of faults both on the sys-
tem size and the particle size. To this time, these depen-
dences have not been investigated in sufficient detail.

In Section 3, we present the results of our numerical
simulations of the deformation process in which the sys-
tem begins as a regular arrangement of grains and the
time evolutions is computed using the discrete element
method (DEM) [25]. The simulations generate faults simi-
lar to those observed in the experiments, and we find that
they are created through the fingering-like instability of
the stress field. The simulational finding that the fingering
instability is the mechanism responsible for the creation
of faults is consistent with the results of our experiments.
These results suggest that the fingering instability induces
faults in systems with both regular and irregular initial
arrangements.

2

Experiments

We prepared a V-shaped container made of transparent
acrylic plates, as depicted in the schematic picture of
Fig.1. The V-shaped structure is held between parallel

Fig. 1. The experimental setup
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lateral walls separated by a distance L, = 125 mm. We
refer to the plates as “V-walls”. The slope of each V-wall
is variable, and they are covered with thin rubber sheets
to prevent the acrylic from being scratched.

In an experiment, we first poured a single kind of beads
of total weight Mg into the container and tapped it a few
times to level the surface horizontally. Then we fixed one
of the plates at an angle f¢;; and decreased the angle of
the other plate, €, from some initial angle 6y at an almost
constant angular velocity, w.

Figure 2 displays a lateral view of the container at a
rotation of 6y — 6 = 15°. In order to visualize the dis-
placement of grains, we prepared horizontal layers of dif-
ferent colored beads prior to the rotation of the plate. As
shown in this figure, several V-shaped faults are observed
in the container and they have similar forms and are lo-
cally approximately parallel. The creation angle of the V
formed by the faults does not depend on the angle of the
V-walls. As the initial angle of the V made by the walls is
larger, the faults remain fixed, occupying only the central
region of the now wider system. It is known from previ-
ous works that similar faults appear in sand systems held
within box-shaped containers and these faults are believed
to form an angle determined by the Mohr-Coulomb crite-
rion [18-21]. However, the mechanism responsible for the
formation of faults and its relation to the properties of
granules are not yet well understood.

We used nearly mono-disperse glass beads, because
we have found that the fault patterns become more pro-
nounced as the grains become more uniform. We prepared
three kinds of spherical glass beads, made of soda-lime si-
licated glass of density 2.540.1 g/cm?, with average diam-
eters D = 40, 100 and 200 ym. We refer to them as GB40,
GB100 and GB200. In each experiment, 80 — 90% of the
particles had diameters between 0.9 D and 1.1 D [26].

In the experiments whose are reported below, we used
the values 67, = 50°, 6y = 60° and w = 0.6°/s. The
deformation resulting from this value of w can be consid-
ered quasi-static, because we found that the behavior is
essentially unchanged when values smaller than w ~ 10° /s
are used. The entire experimental setup was placed in an
airtight container. The relative humidity of the air inside

Fig. 2. A lateral view of the container at 8 = 45° in the case
that the horizontal colored layers were prepared initially at
6o = 60°

was kept at a nearly constant value, which was somewhere
in the range 5 — 15% for each experiment, by use of desic-
cants. Before the experiments, the glass beads were dried
by placing them in this container for several days, until
their total weight no longer decreased with time.

Figure 3 is a photograph of the top view of the gran-
ular surface at # = 30° for an experiment with GB100
beads of M = 400 g. The width of this image corresponds
to a length of 128.3 mm along the surface, and the y axis is
parallel to the rotation axis of the V-walls. The change in
the system resulting from the creation of faults is observed
as a striped pattern on the surface. The stripes are almost
parallel to the y axis, and the spacing is essentially
independent of L,. Because narrow stripes appear near
the central region along the x direction, it is inferred
that there are small V-shaped faults corresponding to
these stripes, although it is not possible to observe them
directly, due to the disturbance introduced by the walls
constituting the lateral boundaries.

We measured the spacing of stripes A\(z, y) on the sur-
face to investigate the formation of faults in the system.
To do this, we processed snapshots as follows. We first
cropped a digital snapshot image, eliminating the region
near the lateral boundaries, and for each values of y, we
determined the points corresponding to local minima of
the brightness along the x direction, after carrying out a
smoothing process. For a given value of y, considering a
series of intervals divided by such minima, we defined
the spacing \(x,y) associated with any z as the length
of the interval containing this z. For example, we obtained
the representation of the dark stripes displayed in Fig. 4
by processing the region within the dotted lines of the
image in Fig. 3. Each pixel of this image corresponds to
a region of width Az = 0.513mm on the granular sur-
face, and the uncertainty in this processing is essentially
given by Az. In Figs. 5-7, we display graphs of A(z), which
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Fig. 3. A snapshot of the granular surface
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Fig. 4. The image of the centers of dark stripes obtained by
processing the snapshot in Fig. 3
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Fig. 5. The process of the formation of stripes
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Fig. 6. Dependence on the system size

represents the value obtained by averaging A(z,y) for a
given x over y and over five experiments using the same
parameter values.

Figure 5 displays a series of functions A(z) obtained
at the angles # = 50,45 and 40°. This figure shows the
development of a striped pattern in a set of experiments
with GB100 beads of M = 400g. It is seen that A(z) is
large in the region where stripes have not yet formed. A
broad peak of A(z) is observed in the central region for
6 = 50°, and its height decreases with 6. At 6 = 40°,
stripes appear over the entire surface, and A(x) is seen to
decrease from either V-wall toward the center. We infer
from these results that the faults in the center of the sys-
tem appear later than those near the V-walls, and the
spacing of faults is a decreasing function of the order in
which they appear.
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Fig. 7. Dependence on the grain size

Figure 6 displays the data obtained at 8 = 40° for the
experiments with GB100 beads of different total weights,
M = 200,400 and 600g. The length of the system along
the z direction, L., increases in proportion to v/ M. We
find that the three functions A(z) obtained using the three
different weights are identical, within experimental error,
and hence that the spacing is independent of /M and L.

In Fig. 7, we display the results obtained at 8 = 40° for
the three kinds of glass beads, GB40, GB100 and GB200,
with the same weight, M = 400 g. The GB200 beads have
a diameter 5 times larger than that of the GB40 beads. It
is seen that in each case, the spacing of stripes decreases
when moving from either end toward the center, and we
find that the value of the minimum \,,;, increases with
the diameter of particles D. We conjecture that \,,;, is
determined by the width of the faults, because this width
is known to be proportional to the grain size in a system
with an irregular initial arrangement of grains. However,
except in the central region, where A\(x) ~ \in, we find
that the spacing of stripes does not depend significantly
on the grain size, although it is difficult to determine such
a dependence precisely.

We summarize the results of our experiments below.

1. A series of faults appears in succession, beginning in
the vicinity of the V-walls and proceeding toward the
center of the system as  is decreased.

2. The spacing of faults decreases as the center is ap-
proached. The minimum value of the spacing, Ain,
increases with the size of the particles, D.

3. Except for the minimum value, the spacing of faults
does not depend significantly on either the system size
L, or the grain size D.

3

Numerical simulations

In this section, we discuss our simulations of 2-dimensional
granular systems using DEM to investigate the mecha-
nism responsible for the formation of faults in quasi-static
deformation. The system that we simulate corresponds to
a cross section of the experimental system perpendicular
to the planes of the faults.

In order to simply the investigation, we used mono-
disperse particles and regular initial arrangements. There
are two advantages to investigating an idealized system
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with these simplifications in comparison to an irregular
system, namely, that the heterogeneity exhibited by such
a system is due only to the deformation, and that in such
a system faults can be produced with a smaller number of
particles. The faults found in our numerical simulations
are similar to those observed in the experiments, as dis-
cussed elsewhere [27]. After explaining the details of the
method used in our numerical simulations, we report the
results below.

3.1
The simulational method for modeling quasi-static
deformation

We treat all the particles as elastic disks of equal radius
that exert frictional forces on one another at their contact
points with friction constant u. We ignore the details of
such frictional interaction, such as the difference between
static and dynamic friction constants.

DEM is a standard method employed in the numerical
simulation of granular systems [25]. As the interactions
among the particles, we use only simple 2-body contact
forces, and with these, we numerically solve the equations
of motion for each particle. Any pair of particles is con-
sidered to interact only when their disks overlap , and we
use the term “in contact” to discribe the state of over-
lap. We next present the basic equations and define the
interactions to make clear the details of our simulational
method.

We prepare N particles of radius a, mass m and mo-
ment of inertia I. Denoting the position and rotation an-
gle of the kth particle by ®) and (), respectively, its
equations of motion are given by

mi® = 3 FE) 4 g 4 B0
I1#k

hﬁ(k) _ Z aFt(“) + aFt(kw) 7
I#k

(1)
(2)

where 7% = () — £(®) represents the vector extending

from the kth to the [th particle and mg is the force of grav-
ity. The kth particle is subject to the force F¥D exerted
by the [th particle and the external force F%) exerted by
a wall or walls when in contact with them. The subscript
‘t’ indicates the tangential component of the force.

We next define the particle-particle contact forces
F*)_ We consider a pair of particles £ and [ and omit
the superscript. ) for simplicity in this paragraph. We
introduce the unit normal vector n = r/r and the unit
tangential vector t perpendicular to m. We choose the
direction of ¢ so that ¥*) increases when the kth par-
ticle rotates in that direction. The two components of the
force, F,, = F -n and F; = F -t are given in terms of the
normal displacement, u,,, the tangential displacement, wu,,
and the normal relative velocity, v,,, of the contact point
as

F,, = N(kpup, +npv,) and  Fy = kpuy, (3)

where N(z) = 2®(—z), and O(x) is the Heaviside func-
tion. This form of N(xz) was chosen so that the contact
forces are never attractive. We take the spring constants

k, and kg, and the viscosity 7, to be equal for every pair
of particles. The normal and tangential components of the
relative velocity are

vp=7-n and v =7 t—a(@® +40). (4)

The displacements are interpreted as the distances result-
ing from the relative movement of the particles after they
come into contact. Therefore u,, and u; are assumed to be
zero when the particles are not in contact (i.e. for r > 2a).
When in contact, these values are obtained by integrating
the equations,

and iy = v ®(p|Fn| — |Fi]), (5)

from the time at which they first overlap. Hence, the first
equation yields the distance of the overlap w, = r — 2a.
As expressed by the second equation, we consider the sit-
uation in which the tangential forces takes the form of the
Coulomb frictional condition with coefficient 1, and hence
there is a maximal tangential force that depends on the
normal force, beyond which the particles slip.

As the initial conditions of our simulations, we pre-
pared regular arrangements in which there were no tan-
gential forces acting on any particles. Using such initial
states, we were able to observe the stress that arises as
a result of deformation more clearly. In order to pre-
pare the initial states, we first stacked particles in lay-
ers to form a triangular lattice with an opening angle
a = 60°, as shown in Fig. 8. With the coordinate axes
¢ and 7, coinciding with two sides of the triangular lat-
tice, as shown, the centers of the particles are placed at
the points (¢,7n) = 2a(i,j), where ¢ and j take the integer
values satisfying 0 < i, j, i +j < L, and the height of
the stacked array of particles is H = v/3La. We next al-
lowed these states to relax under gravity for a sufficiently
long time Ty, with the tangential spring constant k; set
to zero. The resulting states were the initial states of our
simulations.

The V-walls were initially parallel to the £ and 7 axes.
To simplify the simulations, they are given the same elastic
and frictional properties as the particles. In a simulation,
the parameter k; was set to a finite value, and then we
began rotating the left V-wall with an angular velocity w;
in the counterclockwise direction and the right wall with
an angular velocity w; in the clockwise direction. Keeping
these angular velocities sufficiently small, we can cause
the system to change quasi-statically.

By appropriately rescaling length, time and mass, the
parameters a, g and m can be set to 1 in Egs. (1) and

Uy, = Up,

T]:Zaj Z 5’;:2611

Fig. 8. An initial arrangement of particles



(2). We adopted the moment of inertia I = ma?/2 = 1/2,
regarding the particles as 2-d elastic disks, and fixed the
normal spring constant to k,, = 10°, treating the particles
as nearly rigid. We must determine the values of the other
parameters necessary to realize quasi-static processes. In
our preliminary tests, the results of the numerical sim-
ulations were essentially independent of the viscosity 7,
under the conditions described below.

We imposed the over-damped condition, n2 > 2k,m,
so that the inertial forces were sufficiently small in com-
parison with the viscous forces. We used the value 7, =
103. Under this condition, the collision of two particles is
perfectly inelastic. Although this is unrealistic for most
types of granular matter, we assume that the states of the
system realized in quasi-static processes are independent
of the details of energy dissipation process [11].

The angular velocities of the opening angle of the
V-walls, w = w; 4+ w;,, must be so small that the viscous
forces are negligible in comparison to the force of grav-
ity acting on a particle. To ensure this, we required the
condition 7,wa < mg, because we expect that the rela-
tive velocities of particles in contact are on the order of
wa. Our preliminary tests indicated that the fluctuation
of the number of contact points does not depend signifi-
cantly on w under such conditions.

The initial relaxation time Ty must be so large that
elastic waves in the system have damped sufficiently by
the time that the rotation is started. The relaxation time
of an elastic wave of a wave number ¢ is estimated to
be T'(q) ~ m/2n,a?q? for a system composed of elastic
springs with coefficient of viscosity 7,,. Because the slow-
est relaxation mode corresponds to the system size, we
required Ty < T'(7/H ) and used Ty = H?/n .

We integrated Egs. (1) and (2) using the central finite
difference method with a time step At. In order to suppress
the short wavelength numerical instability corresponding
to the fastest relaxation mode of the particle size, a, the
condition At < T'(7/2a) should be satisfied. To guarantee
this, we used At = 1/50m,,.

3.2
The initial process of the formation of faults

Figure 9 depicts the results of numerical simulations in
the case of symmetric motion of the walls with w; = w, =
10~* = w/2 in the case that gravity is directed in the nega-
tive z direction, where N = 7351 (H ~ 200), k; = 103 and
p = 0.5. Figures (a) and (b) are snapshots at the rotation
angles wt/2 = 0.5° and wt/2 = 2.0°, respectively. To facil-
itate visualization of the change undergone by the system,
the particles are shaded in such a way that initially the
system consists of horizontal, alternating stripes of black
and white. Figure 9 (a) depicts the situation resulting from
a very small rotation: Here, the arrangement of particles
is the same as in the initial state. As the rotation angles
increase, somewhere in the system the strain becomes so
large that the local deformation exceeds the size of a sin-
gle particle, and, as shown in Fig. 9 (b), V-shaped faults
similar to those observed in the experiments appear [27].
Although the results shown here are for the symmetric
case, w; = wy, we found that similar faults appear in the
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Fig. 9. The change in the arrangement of particles undergone
in a DEM simulation
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Fig. 10. Internal frictional angles in the state depicted in
Fig. 9 (a)

asymmetric case w; = 0, w, = w. This insensitivity of the
general form of the initial faults to the relation between
w; and w,. is also observed in the experiments.

In order to investigate the stress in the system, we

calculate the internal frictional angle ¢

cos ™ = 2v/det ¢ /| Tr o™

from the stress tensor of the nth particle,

ol :izpw (") (20 — rm)

given by

(6)

(7)

using standard definitions [13]. Figure 10 displays the
grey-scale image of the internal frictional angles for the
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(a) 6 =59.9° (b) § =59.8° (c) § = 59.7° (d) 6 = 59.6°

Fig. 11. The time development of the stress field at early
times

state depicted in Fig. 9 (a). Although the arrangement of
particles has not changed from the initial state, heteroge-
neities have appeared in the stress field, and we observe
that some microscopic shear zones have developed at this
stage. Here, the deformation of the system from its origi-
nal state is everywhere smaller than the size of a particle,
and the heterogeneity of the stress field is caused by micro-
scopic slips among particles in contact. The asymmetry of
the stress field despite the symmetry of the wall motion is
due to numerical noise. We note that the state would not
change further if we were to stop the rotation of the walls
at this angle, because the process is quasi-static.

We can create simpler situations to investigate the ini-
tial processes leading to the creation of faults. Tilting the
direction of gravity by ¢g, it is found that faults appear
along one direction, not in a V-shape. Figure 11 displays
the development of the distribution of internal frictional
angles in a system with ¢, = —15°, w, = 107* and w; = 0.

As the walls are rotated, many microscopic shear zones
appear from the surface, and they compete among one
another to increase in length, with some of them eventu-
ally extending to the bottom of the container. This pro-
cess is similar to that seen in system with a fingering-like
instability, such as those exhibiting crystal growth
[28,29]. The microscopic shear zones are aligned paral-

lel to one another, and both the length of each shear zone
and the spacing between neighboring zones become larger
as the position becomes closer to the left V-wall.

A localized deformation increases in magnitude in a
the growing shear zone until it develops into a macro-
scopic fault. As indicated by the arrows in Figs. 11 (a)—(d),
the position of a developed shear zone moves gradually
toward the left wall as the right wall is rotated. Further
rotation results in the longest shear zone becoming a mac-
roscopic fault, as shown in Fig. 12 (a), as local slip of a dis-
tance greater than the particle size occurs. The first fault
appears near the left wall, because the shear zone closest
to this wall is able to grow longest. Figure 12 (b) indi-
cates the number of contact points for each particle in the
state depicted in Fig. 12(a). Note that there are 6 contact
points for each particle in the regular arrangement of the
initial state. As the wall is rotated, this value becomes 4 for
most particles, because of the Reynolds dilatancy accom-
panying deformation [3], while it becomes 3 or smaller for
some particles in developed shear zones. When a fault is
created from a microscopic shear zone, the arrangement
of particles in the lower region of the fault returns to an
approximately regular state with 6 contact points for each
particle, and the propagation of this shear zone toward
the left wall ceases. Even after this fault has formed and



(a) Internal frictional angles (b) Number of contact points.

Fig. 12. The first fault, arising at § = 59.0°, after the times
depicted in Fig. 11

stopped propagating, the microscopic shear zones existing
above and to the right of it continue to form and prop-
agate. In this way eventually, a sequence of faults forms
in the system. This scenario of the sequential creation of
faults formed in our simulations is consistent with our
experimental result that faults emerge first in vicinity of
the V-walls, and as time goes on, new faults appear that
are located successively closer to the center of the system.

The instability of the stress field depends significantly
on the magnitude of the friction among the particles. In
the case of a small coefficient of friction, the spacing of
microscopic shear zones decreases, as shown in Fig. 13,
and the distances that they travel in the £ direction dur-
ing the growth become smaller.

The competitive growth of microscopic shear zones is
believed to be caused by their inhibitive interactions com-
municated through the stress field. Assuming that the
screening length of each shear zone is proportional to its
length, as is the case for the cracks in elastic materials, we
can infer that the spacing of microscopic shear zones in-
creases with their length as their positions become closer
to a V-wall. We conjecture that the spacing of faults also
increases with their length, because they are created from
developed shear zones. This is consistent with the experi-
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Fig. 13. The case of a small coefficent of friction, u = 0.1, at
0 = 59.0°

mental result that the spacing of faults is larger near the
V-walls than in the center of the system.

4
Conclusions

We reported the results of experimental and numerical
investigations on the formation of faults in granular sys-
tems caused by quasi-static deformation.

In the numerical simulations employing DEM, we car-
ried out computations describing the initial deformation
process, starting from regular arrangements, until the
creation of faults. Our simulations show that a fingering-
like instability appears in the stress field and that micro-
scopic shear zones grow in length, eventually becoming
the sources of macroscopic faults. These shear zones also
propagate in the direction perpendicular to themselves.
We hypothesize that microscopic shear zones mutually in-
hibit each other’s growth through interactions communi-
cated by the stress field and that the screening length of
each shear zone increases with its length. This fingering-
like instability can be investigated analytically in the case
of an infinitesimal deformation. Such a study will be re-
ported in another paper.

In the experiments, we investigated faults created in
a granular system contained in a V-shaped container. We
found that as the walls of the container are opened, a series
of faults appears in succession, beginning near the walls
and proceeding toward the center of the system. We also
found that as the position moves toward the center, the
spacing of the faults decreases. This spacing of faults does
not depend significantly on the particle size. From these
observations, we conclude that a fingering-like instability
appears in the real system, as well as in the numerical
simulations.

The initial arrangements of the real granular sys-
tems we studied experimentally were, obviously, irregular.
By contrast, we used ideal, regular arrangements in our
numerical simulations. As is well known, the properties
of stress propagation can differ qualitatively for regularly
and irregularly arranged particles [5]. The fact that we
have obtained similar results for these two systems de-
spite the difference in their initial arrangement suggests
that the process of the formation of faults found here is of a
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general nature. Indeed, it is known that the stripe pattern
of faults reported here appears in many kinds of gran-
ular systems, from sands to nearly mono-disperse glass
beads. It thus seems that the mechanism responsible for
the arrangement of faults is quite universal. It is desirable
to construct a theory at a coarse-grained level that cap-
tures the mechanism common to all of these systems. This
is a future problem.
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