ベクトル解析 追試験問題

具体的な計算過程も全て記すこと。

- I. $A = (x^2, yz, xz)$ 、r = (x, y, z), $r = \sqrt{x^2 + y^2 + z^2}$ とする。
 - 1. 以下の量を計算せよ。
 - (1) $\nabla \cdot \mathbf{A}$
 - (2) $\nabla(\nabla \cdot \mathbf{A})$
 - (3) $\nabla \times \mathbf{A}$
 - 2. 以下の微分演算の結果がスカラーかべクトルかを答え、その値を求めよ。
 - (1) $\nabla \cdot \boldsymbol{r}$ (2) $(\nabla r) \times \boldsymbol{r}$
 - (3) $(\nabla r) \cdot \mathbf{r}$ (4) $\nabla \times \frac{\mathbf{r}}{r}$
- II. C^2 級のベクトル場 A について,次のことを示せ.

$$\nabla \cdot (\nabla \times \mathbf{A}) = 0.$$

III. 図のように,半径 a の無限に長い円筒導体内に,強さ I の定常電流が z 軸の正の向きに一様に流れているとする.磁場を H,電流密度を i としたとき,マックスウェルの方程式の一つは,

$$\nabla \times \boldsymbol{H} = \boldsymbol{i} \tag{1}$$

で与えられる。円筒座標を (ρ, ϕ, z) とし、基底ベクトルを $e_{\rho}, e_{\phi}, e_{z}$ とする。

1. 円筒座標 (ρ,ϕ,z) の点における磁場 $m{H}$ は $m{e}_\phi$ 方向を向き、大きさは ho のみに依存することを説明せよ。

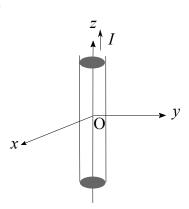
なお、強さIの定常電流が作る磁場は、次のビオ・サバールの法則で与えられる。点Sのまわりのds部分を流れる電流が点Pに作る磁場dHは、

$$d\boldsymbol{H} = \frac{I}{4\pi} \frac{d\boldsymbol{s} \times \boldsymbol{r}'}{r'^3}$$

となる。ここで、r' は、S から P に向かうベクトル \overrightarrow{SP} 。

2. マックスウェルの方程式 (1) を用い,さらにストークスの定理を適用して,次の領域における磁場の e_ϕ 成分, H_ϕ を求めよ。

(a) $\rho < a$ (b) $a \le \rho$



IV. 内径 a、外径 b の中空の球に電荷 Q が一様に分布している。球の中心を原点 O として下図のように座標系をとる。

電場を E , 電荷密度を ρ , 真空の誘電率を ε_0 としたとき , マックスウェルの方程式の一つは ,

$$\nabla \cdot \boldsymbol{E} = \frac{\rho}{\varepsilon_0} \tag{2}$$

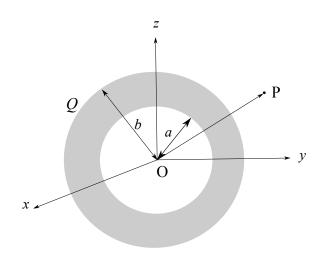
で与えられる。球座標系を (r,θ,ϕ) とし、基底ベクトルを e_r,e_θ,e_ϕ とする。

(1) 球座標 (r,θ,ϕ) の点 P における電場 E は e_r 方向を向き、大きさは r のみに依存することを説明せよ。なお、電荷が分布している領域内の点 S のまわりの体積 dV 部分の電荷 ρdV が点 P につくる電場 dE は、次のクーロンの法則に従う。

$$d\mathbf{E} = \frac{\rho dV}{4\pi\varepsilon_0} \frac{\mathbf{r}'}{r'^3}$$

ここで、 $r' = \overrightarrow{\mathrm{SP}}, r' = |r'|$.

- (2) 式 (2) とガウスの定理を用いることにより、電場の e_r 成分 E_r を以下の場合について求めよ。
 - (a) r < a (b) $a \le r < b$ (c) $b \le r$



 ${\rm V}$. 円筒座標系において , 曲線座標は $(q_1,q_2,q_3)=(\rho,\phi,z)$ である。以下の問いに答えよ。

- 1. デカルト座標系での座標 (x,y,z) を円筒座標系の座標 (ρ,ϕ,z) で表せ。 また、 (ρ,ϕ,z) を図示せよ。
- 2.~i=1,2,3 について , $rac{\partial m{r}}{\partial q_i}$ を計算せよ。
- 3. $m{f}_i = rac{1}{h_i}rac{\partial m{r}}{\partial q_i}, \; h_i = |rac{\partial m{r}}{\partial q_i}|$ とする。 h_1, h_2, h_3 を求めよ。また, $m{f}_1, m{f}_2, m{f}_3$ は規格直交系をなすことを示せ。

VI. 次のことを証明せよ。

- 1. エルミート行列の固有値は実数である。
- 2. エルミート行列の異なる固有値に属する固有ベクトルは直交する。