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We study unlearning of mixed states in the Hopfield model for the extensive loading case.

Firstly, we focus on the case I that several embedded patterns are correlated with each other,

whereas the rest are uncorrelated. Secondly, we study the case II that patterns are divided into

clusters in such a way that patterns in any cluster are correlated but those in two different

clusters are not correlated. By using the replica method, we derive the saddle point equations

for order parameters under the ansatz of the replica symmetry. The same equations are de-

rived by the self-consistent signal-to-noise analysis as well in case I. In both cases I and II,

we find that when the correlation between patterns is large, the network loses its ability to

retrieve the embedded patterns, and depending on parameters, a confused memory which is a

mixed state and/or the spin glass state emerges. By unlearning of the mixed state, the network

gets the ability to retrieve the embedded patterns again in some parameter regions. We find

that to delete the mixed state and to retrieve the embedded pattern, the coefficient of unlearn-

ing should be chosen appropriately. We perform the Markov chain Monte Carlo simulations

and find that the simulation results and theoretical ones agree quite well, except for the SG

solution in some parameter region due to the replica symmetry breaking. Furthermore, we

find that the existence of many correlated clusters reduces the stabilities of both embedded

patterns and mixed states.

1. Introduction

Since an associative memory model, the Hopfield model,1) has been proposed, many stud-

ies on attractor neural network models have been done.2–4) Among others, There is a paper

on dreaming in which the authors consider that one role of dreaming is to regulate memories,
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that is, unnecessary memories are considered to be deleted by dreaming.5) In this context,

studies on unlearning have been done.6–9, 11–13)

In dreaming, many memories appear, and each memory is usually not strange itself, but

dreams themselves are sometimes unrealistic and strange. In the Hopfield model, undesirable

memories are the mixed states and spin glass states. A spin glass state does not have any

correlation with any embedded patterns, and it seems that it does not appear in dreaming. On

the other hand, a mixed state is a mixture of several embedded patterns, and is considered to

appear in dreaming.

Let us consider methods to regulate memories in the Hopfield model. One method is to en-

hance the stability of the embedded patterns, and usually the Hebbian rule is used. However,

for this method, the stability of the mixed states composed of strengthened patterns are also

enhanced, and thus this method is not appropriate to regulate memories. Another method is

to reduce the stability of the mixed states. Unlearning is considered to reduce or lose a mem-

ory, and reducing the stability of the mixed states is regarded as unlearning of mixed states.

The anti-Hebbian rule, which is the Hebbian learning multiplied by negative coefficient, has

been used as the method of unlearning. For example, unlearning at high temperature12, 13)

which is the anti-Hebbian learning of spin glass states and unlearning of the product of local

fields by the anti-Hebbian rule10) have been studied. In the present paper, we also adopt the

anti-Hebbian rule for unlearning of mixed states.

Previously we studied unlearning of mixed states in the Hopfield model for the case that

the number of patterns p is much smaller than that of neurons, N.14) By unlearning of mixed

states, we showed that there is an unlearning region of parameters where all patterns are

retained and all mixed states are deleted, although tuning the parameters in this region is

more difficult as p increases since the region shrinks.

It is interesting to study the extensive loading case and also the effect of correlations

between embedded patterns. It is known that, when there is a correlation between patterns,

mixed states also appear for a rather wide range of parameters, and there are parameter re-

gions where mixed states exist but the memory states do not. Thus, in this paper, we study

unlearning of the mixed state in the Hopfield model for the extensive loading case with and

without correlations between patterns. In particular, we study two cases, case I that several

patterns are correlated and others are uncorrelated, and case II that patterns in the same clus-

ter are correlated and patterns in two different clusters are uncorrelated. We derive the saddle

point equations (SPEs) by the replica method for both cases and by self-consistent signal-

to-noise analysis (SCSNA) for case I. We show that by unlearning of a mixed state we can
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eliminate the mixed state and retrieve a memory pattern in some parameter regions.

This paper is organized as follows. In sect. 2, we study case I. We formulate the prob-

lem by the replica method and describe the saddle point equations (SPEs) of overlaps. We

compare the theoretical results and results by the Markov chain Monte Carlo simulations

(MCMCs) for the case that temperature T is positive and the number of correlated patterns is

3. We also study the de Almeida-Thouless (AT) stabilities,15) derive the 1-step replica symme-

try breaking (1RSB) solution.16) However, we could not find solutions of the SPE for 1RSB

solution numerically. Furthermore, we treat unlearning by the SCSNA, and study the case that

the number of correlated patterns is 9 at T = 0, and compare the theoretical and numerical

results. In sect. 3, we study case II and make a similar analysis to case I. Section 4 contains

a summary and discussion of the results. In Appendix A, we derive the free energy and the

SPEs for case I. The SPEs of the 1RSB solution is described in Appendix B for case I. In

Appendices C and D, we derive the free energy and the SPEs, and the formula for the AT

stability for case II, respectively.

2. Case I. Several correlated patterns and others uncorrelated

2.1 Formulation

The Hopfield model is a recurrent network of N neurons and all neurons interact with each

other. The state of the ith neuron is represented by si. si = 1 or si = −1 corresponds to a firing

or rest state, respectively. Let ξµ = (ξ
µ

1
, ξ
µ

2
, ..., ξ

µ

N
) be µth pattern, where µ = 1, 2, · · · , p. We

assume that ξ
µ

j
takes values of ±1. Furthermore, we assume that the three patterns ξ1

j
, ξ2

j
, ξ3

j

are correlated with each other, and other patterns are not correlated with each other and with

these three patterns. We generate three patterns as follows. Let ξ j
(m) be a mother pattern for

a fixed j. This takes ±1 with the probability 1/2. Then, we generate a pattern ξ
µ

j
, which takes

the value ξ j
(m) with the probability P =

1+
√

a

2
and −ξ j

(m) with the probability 1−P. We denote

the average of ξ
µ

j
with the mother pattern ξ j

(m) fixed by 〈〉 and we have

〈ξµ
j
〉 = ξ j

(m)
√

a, (1)

〈ξµ
j
ξνk〉 = a ξ j

(m) ξk
(m) , (µ , ν). (2)

Furthermore, if we take the average over the mother pattern, we have

[ξ
µ

j
] = 0, [ξ

µ

j
ξνk] = a δ j,k, (µ , ν). (3)

Here, we denote the average over {ξµ
j
} and {ξ(m)

j
} by [·]. Now, let us consider unlearning of

the mixed state ξmix
j = sgn(ξ1

j + ξ
2
j + ξ

3
j
). Denoting the interaction of the Hopfield model by
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J jk
(H) = 1

N

∑p

µ=1
ξ
µ

j
ξ
µ

k
, we adopt the following interaction,

J jk = J jk
(H) − h

N
ξmix

j ξ
mix
k =

1

N

p
∑

µ=1

ξ
µ

j
ξ
µ

k
− h

N
ξmix

j ξ
mix
k . (4)

The Hamiltonian is given as

H = −
∑

j<k

J jk s jsk = −
N

2

p
∑

µ=1

(
1

N

N
∑

j=1

ξ
µ

j
s j)

2

+
hN

2
(

1

N

N
∑

j=1

ξmix
j s j)

2 +
p − h

2
. (5)

Now, we study the system by the replica method. We consider the situation that some of

correlated patterns and mixed states composed of these patterns are retrieved. We obtain

the same results by the SCSNA. The partition function is Z = Tr{s j} exp{−βH}, where T is

temperature and β = 1/T . Regarding patterns as quenched variables, we calculate the free

energy F = −T ln Z averaged over patterns, [F]. In order to take the average, we use the

replica method and introduce the replica index ρ, (s
ρ

1
, s
ρ

2
, · · · , sρ

N
), ρ = 1, · · · , n. By using the

standard recipe, we obtain the free energy per neuron f = [F]/N = −T [ln Z]/N as

f =
1

n

∑

τ≤3,ρ

(mτρ)
2

2
− h

1

n

∑

ρ

(mmix
ρ )2

2
+
α

2nβ
Tr ln

(

(1 − β)E − βQ
)

+
αβ

2n

∑

ρ,σ

rρσqρσ

− 1

nβ
〈ln Tr{sρ} exp(βHη)〉{η1,η2,η3}, (6)

βHη =
∑

ρ,σ

αβ2

2
rρσsρsσ + β

∑

τ≤3,ρ

ητsρmτρ − βh
∑

ρ

ηmixsρmmix
ρ . (7)

Here, 〈·〉{η1,η2,η3} means the average over η1, η2, η3 where ηµ takes ±1 with the probability
1±
√

a

2
.

See Appendix A for the derivation. Here, ηmix = sgn(η1 + η2 + η3) and we define the so-called

spin glass order parameter qρσ(ρ , σ) and n × n matrices, E,K and Q as

qρσ ≡ 1

N

∑

j

s
ρ

j
sσj , (8)

Eρσ ≡ δρσ, (9)

Kρσ ≡ δρσ − βqρσ, (10)

Qρσ ≡



















qρσ, for ρ , σ

0, for ρ = σ.
(11)

Note that qρρ = 1 in the above expression. The following relations hold.

mµρ =
1

N

∑

j

ξ
µ

j
s
ρ

j
, (12)
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rρσ =
1

α

∑

µ≥4

mµρm
µ
σ. (13)

2.2 Replica symmetric solution

We assume the replica symmetry.

mτρ = mτ, qρσ = q (ρ , σ), rρσ = r (ρ , σ). (14)

The replica symmetric free energy fRS is obtained as

fRS =
∑

τ≤3

(mτ)2

2
− h

(mmix)2

2
+
α

2β

(

ln(1 − β + βq) − βq

1 − β + βq

)

+
αβ

2
r(1 − q)

−1

β
〈
∫

Dz ln

(

2 cosh

{

β(
√
αrz +

∑

τ≤3

ητmτ − hηmixmmix)

})

〉{η1,η2,η3}. (15)

From this, the SPEs are obtained as

mτ =

∫

Dz〈ητ tanh

{

β(
√
αrz +

∑

ν≤3

ηνmν − hηmixmmix)

}

〉{η1,η2,η3}, τ = 1, 2, 3. (16)

mmix =

∫

Dz〈ηmix tanh

{

β(
√
αrz +

∑

ν≤3

ηνmν − hηmixmmix)

}

〉{η1,η2,η3}, (17)

q =

∫

Dz〈tanh2
{

β(
√
αrz +

∑

ν≤3

ηνmν − hηmixmmix)

}

〉{η1,η2,η3}, (18)

r =
q

(1 − β + βq)2
. (19)

There are four kinds of solutions.

Retrieval (R) state m1 > 0,m2 = m3 < m1, q > 0.

Mixed (M) state m1 = m2 = m3, q > 0.

Spin glass (SG) state mτ = 0, q > 0, (τ = 1, 2, 3).

Para (P) state mτ = 0, q = 0, (τ = 1, 2, 3).

The transition temperature TSG from the P to SG states is the same as in the Hopfield model

and is given by

TSG = 1 +
√
α. (20)

2.3 AT stability

Here, we study AT stability.15) We investigated the replicon mode, and derived a similar

formula to that in the Hopfield model.2) The eigenvalues of the replicon mode are given by

λ± = −1

2
(u + v) ±

(

1

4
(u + v)2 + 1 − uv

)1/2

, (21)
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u = αβ2

∫

Dz〈cosh−4
{

β(
√
αrz +

∑

ν≤3

ηνmν − hηmixmmix)

}

〉{η1,η2,η3}, (22)

v =

(

1 − β(1 − q)

)−2

. (23)

The conditions for the AT stability are λ+ > 0 and λ− < 0. Thus, the AT line is given by

uv = 1. (24)

2.4 Numerical results of unlearning of mixed state with three patterns for T > 0

In this subsection, we compare the numerical and theoretical results for T > 0. We per-

formed Markov chain Monte Calro simulations (MCMCs). We updated neurons 500 × 2

Monte Carlo sweeps (MC sweeps) and took average of order parameters during last 500

MC sweeps. Here, one MC sweeps corresponds to N updates. As initial configurations, we

took states near to ξ1, ξmix, and ξ4 depending on solutions we wanted to study. In the region

where only the SG state exists, we took random initial configurations and used simulated

annealing (SA) method. We took 10 samples. In figures below, we display average values of

order parameters together with their standard deviations. We studied the following four cases

for N = 10000 and α = 0.02.

Case 1: a = 0 and h = 0 (no unlearning), case 2: a = 0 and h = 0.2 (unlearning), case 3:

a > 0 and h = 0 (no unlearning), case 4: a > 0 and h = 0.2 (unlearning).

The meaning of curves, symbols, and the conditions of simulations are explained only in

the caption of Fig.1 since these are the same in Figs. 2 to 6. Almost all figures, error bars are

too small to realize.

2.4.1 Temperature dependences of order parameters

First of all, we study the effect of unlearning when a = 0 by comparing the results of

cases 1 and 2. As seen from Fig. 1 for case 1, there exist the R state for . 0.7, the M state for

. 0.1, and the SG state for . 1.1. As seen from Fig. 2 for case 2, the M state disappears and

the temperature region where the retrieval succeeds is reduced. That is, unlearning reduces

the stability of the R and M states. This is the same as in the finite loading case of α = 0.14)

To see the reason for this, we calculate the local field h1
i ( hmix

i ) when the pattern ξ1 ( ξmix) is

input.

h1
i = ξ1

i + a(ξ2
i + ξ

3
i ) − h

2
(1 + a)ξmix

i + O(
√
α), (25)

hmix
i =

1

2
(1 + a)(ξ1

i + ξ
2
i + ξ

3
i ) − hξmix

i + O(
√
α). (26)
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From these equations, we note that when a = 0, the ratio of the signal term to the noise term

in h1
i and hmix

i is smaller for h > 0 than for h = 0. This is because there is correlations between

ξ1 and ξmix.

Next, let us study the effect of the correlation a without unlearning by comparing the results

of cases 1 and 3. As is shown in Figs. 1 and 3, the correlation enhances the stability of the M

state and reduces that of the R state. From eqs. (25) and (26), we can see the reason for this.

When h = 0, the ratio of the signal term to the noise term in h1
i

is smaller and is larger in hmix
i

for a > 0 than for a = 0.

(a)
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 0.6

 0.8
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 0  0.2  0.4  0.6  0.8  1  1.2  1.4

T
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m2

m3

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

T

q

Fig. 1. T dependences of mµ and q. a = 0 and h = 0. α = 0.02. Curves: RS solution. Solid curve: R state,

dashed dotted curve: M state, Dashed curve: SG state. Dotted curves are unstable solutions. Symbols: MCMCs.

◦ : m2,+ : m2,× : m3, and ∗: SG state. N = 10000. Averages are taken from 10 samples. Vertical lines are error

bars. (a) mµ, (b) q.
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(b)
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q

Fig. 2. T dependences of mµ and q. a = 0, α = 0.02, and h = 0.2. (a) mµ, (b) q.
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Fig. 3. T dependences of mµ and q. a = 0.2 h = 0. α = 0.02. (a) mµ, (b) q.
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Now, let us study the effect of unlearning when a > 0. In Fig. 4, we show the T depen-

dences of order parameters for case 4. Comparing this figure with Fig. 3, we note that the

stable region of the R state is enhanced and that of the M state is reduced. From these fig-

ures, we find that at some parameter value where the R state does not exist in case 3, it exists

again by unlearning. From these results, it seems that for a ≥ 0, the effect of unlearning is

complicated and difficult to understand by the signal to noise analysis.
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 0  0.2  0.4  0.6  0.8  1  1.2  1.4
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m1

m2

m3

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

T

q

Fig. 4. T dependences of mµ and q. a = 0.2, α = 0.02, and h = 0.2. (a) mµ, (b) q.

2.4.2 α dependences of order parameters

We also studied α dependences of order parameters for a = 0.2 and T = 0.5 with and

without unlearning. We found that the R state exists for small α but at some value of α, it

disappears and instead the M state appears in both cases with and without unlearning. That

is, as α becomes large, the R state tends to disappear and the M state tend to appear. As for

the effect of unlearning, we found that the stable α region of the R state becomes wider for

h = 0.2 than that for h = 0, and the stable α region of the M state becomes narrower for

h = 0.2 than that for h = 0. This is consistent with results on the effects by unlearning stated

above. We also studied a dependences of order parameters for α = 0.02 and T = 0.5 with

and without unlearning. We found that for small a the R state exists but at some value of a,

it disappears and instead the M state appears in both cases with and without unlearning, and

this is also consistent with results on the correlation obtained above.

2.4.3 h dependences of order parameters

Here, we study whether the larger h is the better unlearning works. We set values of

parameters to α = 0.02, a = 0.2, T = 0.5, where only the M state exists for h = 0. The P state

does not exist. In Fig. 5, we draw the unlearning coefficient h dependences of m and q when

ξ1 or ξmix is retrieved. Numerical and theoretical results on the R and M states agree quite

well. The numerical values of q scatter, but a lot of values locate near the theoretical value of

the RS solution for the SG state. This shows signs of the breaking of the replica symmetry of
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(b)
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q

Fig. 5. h dependences of mµ, q. α = 0.02, a = 0.2, T = 0.5. (a) mµ, (b)q.

the SG states. As is studied later, the eigenvalue of the replicon mode of the Hessian for the

SG state is negative, and its absolute value is very small. Thus, we consider even though the

replica symmetry is broken for the SG state, q0 for the replica symmetry breaking solution

might have a similar value to that of the RS solution. When we studied the R (M) state, we

set initial configurations near to ξ1(ξmix). We also tried 10 random initial configurations and

found that only the M state is retrieved. Thus, it is considered that the basin of the M state is

much larger than that of the R state when patterns are correlated. In Fig. 6, we show the result

of the case that ξ4 is retrieved. We found that the other embedded states and mixed states than

ξ1, ξ2, ξ3, ξmix are not affected by unlearning of ξmix as in the finite loading case of α = 0.14)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

h

m4

Fig. 6. h dependences of m4. α = 0.02, a = 0.2, T = 0.5.

2.4.4 h dependences of entropy

In Fig. 7, we show the h dependences of entropy for the R, M, and SG solutions. For all

solutions, their entropies are positive and the solutions are appropriate.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  0.2  0.4  0.6  0.8  1

h

S

Fig. 7. h dependences of entropy. α = 0.02, a = 0.2, T = 0.5. Curves: RS solution.
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2.4.5 h dependences of AT stability

In order to study the AT stability of the RS solutions, we studied the h dependences of

eigenvalues of the replicon mode for the Hessian of the RS solutions. See Fig. 8.

-0.05
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 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  0.2  0.4  0.6  0.8  1

h

λ

Fig. 8. h dependences of eigenvalues of the replicon mode λ. α = 0.02, a = 0.2, T = 0.5. Curves: RS solution.

Eigenvalues are positive for the R and M states and these states are AT stable, but eigen-

values for the SG state take negative values, although absolute values are very small. That is,

the SG state is AT unstable and as shown in Fig. 5(b), values of q scatter and this is a sign of

the RSB. See Fig. 9.
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Fig. 9. h dependences of fRS . α = 0.02, a = 0.2, T = 0.5. Curves: RS solution. (a) R, M, SG, (b) R4.

2.4.6 h dependences of free energy

Now, we study the free energy for existing states focusing on the behavior of the R state.

Let us denote the free energies of the R, M, SG states, and other embedded pattern R4 as fR,

fM, fSG, fR4
, respectively. The SG and R4 states always exist and fSG and fR4

do not depend

on h. We found the following results.

(1) h < h1(∼ 0.09). All states but the R state exist. fM < fR4
< fSG.

(2) h1 < h < h2(∼ 0.15). All states exist and the R state is metastable. fM < fR < fR4
< fSG.

(3) h2 < h < h3(∼ 0.25). All states exist and the R state is stable. fR < fM < fR4
< fSG.

(4) For h3 < h < h4(∼ 0.35). All states exist. The R state is metastable. fR4
< fR < fM < fSG.

(5) For h4 < h < h5(≃ 0.56). All states but the M state exist. The R state is metastable.

fR4
< fSG < fR.
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(6) For h5 < h. The R state disappears, and the R4 and SG states exist. fR4
< fSG.

The free energy of the R and M states increase as h increases, and their stabilities reduce. The

free energy of the R4 and SG states are not affected by unlearning.

Thus, to retain the R state and delete the M state, h should be set to h4 < h < h5.

2.5 1 step replica symmetry breaking solution

We derived the free energy f1RSB and the SPEs. See Appendix B. We tried to find solutions

of the SPEs for 1RSB. However, we could not find any of them. Thus, it is considered that

more than 1 step replica symmetry is broken.

2.6 Numerical results of unlearning mixed state with 9 patterns for T = 0

In this subsection, we study unlearning by the SCSNA. By expressing the state of ith

neuron by xi, the retrieval dynamics is given by

d

dt
xi = −xi + tanh(β

∑

j,i

Ji jx j). (27)

By the SCSNA, we obtain the equations which is essentially the same as the SPEs (16),

(29),(18), and (19). we compare the numerical and theoretical results for T = 0. We study

the case of p = 9 and investigate the h dependence of mµ for fixed α. The M state which is

unlearned is ξmix
i = sgn(ξ1

i + ξ
2
i + · · · + ξ9

i
). The SPEs are

mτ = 〈ητerf

{

1
√

2αr
(
∑

ν≤9

ηνmν − hηmixmmix)

}

〉{η1,η2,··· ,η9}, τ = 1, 2, · · · , 9. (28)

mmix = 〈ηmixerf

{

1
√

2αr
(
∑

ν≤9

ηνmν − hηmixmmix)

}

〉{η1,η2,··· ,η9}, (29)

r =
1

(1 − U)2
, (30)

where q = 1,U = limβ→∞ β(1 − q) and erf(x) ≡ 2√
π

∫ x

0
Due−u2

. In Fig. 10, we show the

numerical results of unlearning of the M state with initial condition s = ξ1. As shown in Fig.

10(a), for a = 0.1 and α = 0.07, when h = 0, the symmetric M state (m1 = m2 = · · · = m9)

is stable and the memory pattern does not exist. For 0.3 < h < 1.3, the memory pattern m1

exists and is ≃ 1. For 1.3 < h, it seems that the memory pattern disappears and the system

shows complex behavior. Similar result is obtained for a = 0.1 and α = 0.09. See Fig. 10(b).

Next, we study the case of unlearning a M state which is retrieved for h = 0. See Fig. 11.

Theoretical results are the same as in Fig. 10. We note that region where the memory pattern

is stable becomes wider than that in Fig. 10. This implies that unlearning of retrieved M state

is more efficient than unlearning of the pure M state, ξmix
i
= sgn(ξ1

i
+ ξ2

i
+ · · · + ξ9

i
).
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Fig. 10. h dependences of mµ. a = 0.1. Curves: RS solution. Symbols: numerical results by Euler method,

time increment ∆t = 0.1,N = 10000. ◦ : m1,△ : m2 − m9. Initial condition is ξ1. Unlearning of the M state. (a)

α = 0.07, (b) α = 0.09.
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(b)
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Fig. 11. h dependences of mµ. a = 0.1. Curves: RS solution. Symbols: numerical results by Euler method,

time increment ∆t = 0.1,N = 10000. ◦ : m1,△ : m2 − m9. Initial condition is ξ1. Unlearning of a M state which

is retrieved for h = 0. (a) α = 0.07, (b) α = 0.09.

3. Case II. Uncorrelated clusters of correlated patterns

Next, we consider the case that patterns in the same cluster are correlated and those in any

two different clusters are uncorrelated. For simplicity, we assume that each cluster contains

p patterns and the correlation between two of them is a, and the number of clusters is M. We

define α =
Mp

N
, N is the total number of neurons. We denote the ν-th pattern in the τ-th cluster

as ξ(τ,ν), where ν = 1, 2, · · · , p and τ = 1, 2, · · · ,M.

[ξ
(τ,ν)

j
] = 0, [ξ

(τ,ν)

j
ξ

(ω,µ)

k
] =

(

δµ,ν(1 − a) + a

)

δ j,kδτ,ω. (31)

We assume that the patterns in the first cluster τ = 1 are retrieved. We denote these patterns

as ξ1, ξ2, · · · , ξp and the M state {sgn(ξ1
i + ξ

2
i + · · · ξ

p

i
)} as {ξmix

i }. The interaction J jk is given

by

J jk =
1

N

M
∑

τ=1

p
∑

ν=1

ξ
(τ,ν)

j
ξ

(τ,ν)

k
− h

N
ξmix

j ξ
mix
k . (32)
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We define the overlap m(τ,ν) as

m(τ,ν) =
1

N

N
∑

i=1

ξ
(τ,ν)

i
si. (33)

The Hamiltonian is given as

H = −
∑

j<k

J jk s jsk

= −N

2

(
p

∑

µ=1

(m(1,µ))2 +

M
∑

τ=2

p
∑

ν=1

(m(τ,ν))2
)

+
hN

2
(mmix)2 +

pM − h

2
. (34)

By the replica method introducing n replicas s
ρ

i
, (ρ = 1, · · · , n), we derive the free energy f

as

n f =
1

2

p
∑

µ=1

∑

σ

(mµσ)2 − h
1

2

∑

σ

(mmix
σ )2 +

α

2pβ
Tr ln K +

αβ

2

∑

σ,ρ

rσρqσρ

−1

β
〈ln Tr{sσ} e

Hη〉{η1,η2,··· ,ηp}, (35)

Hη =
αβ2

2

∑

σ,ρ

rσρs
σsρ + β

∑

σ

p
∑

µ=1

ηµsσmµσ − βh
∑

σ

ηmixsσmmix
σ , (36)

where m
(τ,ν)
ρ = 1

N

∑N
i=1 ξ

(τ,ν)

i
s
ρ

i
, mνρ ≡ m

(1,ν)
ρ , and qρσ and rρσ are the same as in case I, K is an

(np) × (np) matrix and given by

K =















































K1 K2 . . . K2

K2 K1 . . . K2

...
. . .

... K2

K2 K2 . . . K1















































, (37)

K1,K2,Q, E1 : n × n matrices (38)

K1 = (1 − β)E1 − βQ,K2 = −βa(E1 + Q), (39)

Qαβ = (1 − δα,β)qαβ, E1 : unit matrix. (40)

〈·〉{η1,η2,··· ,ηp} is the same meaning as in I. The free energy of the RS solution fRS becomes

fRS =
∑

ν1≦p

(m(1,ν1))2

2
− h

(mmix)2

2
+
αβ

2
r(1 − q)

+
M

2βN

[

(p − 1)

{

log (1 − β(1 − q)(1 − a)) − βq(1 − a)

1 − β(1 − q)(1 − a)

}

+ log (1 − β(1 − q)(1 + (p − 1)a)) − βq(1 + (p − 1)a)

1 − β(1 − q)(1 + (p − 1)a)

]
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−1

β

∫

Dz〈log















2 cosh

















β

















√
αrz +

∑

ν1≦p

ην1m(1,ν1) − hηmixmmix















































〉{η1,η2,··· ,ηp}.. (41)

Equations for mτ,mmix and q of the RS solution is the same as in case I, and the equation

for r becomes

r =
q

3

[

2(1 − a)2

(

1 − β(1 − q)(1 − a)

)2
+

(1 + 2a)2

(

1 − β(1 − q)(1 + 2a)

)2

]

. (42)

See Appendix C for the derivation.

3.1 AT stability

The AT stability is also similar to that in case I. The only difference is the expression of

v.

v =

(

1 + a2(p − 1)

)

(l1 − l̄1)2 + 2a(p − 1)

(

2 + a(p − 2)

)

(l1 − l̄1)(l2 − l̄2)

+(p − 1)

(

1 + 2a(p − 2) + a2(p2 − 3p + 3)

)

(l2 − l̄2)2. (43)

l1, l̄1, l2, l̄2 and details of the derivation are given in Appendix D.

3.2 Numerical results

We set p = 3. Similar to case I, we numerically study T and h dependences of order

parameters etc. We show results for m1,m2,m3, and mmix. Results for q are shown in summary

and discussion.

We studied the following four cases for N = 90000 and α = 0.02.

Case 1: a = 0.15 and h = 0 (no unlearning), case 2: a = 0.15 and h = 0.2 (unlearning), case

3: a = 0.2 and h = 0 (no unlearning), case 4: a = 0.2 and h = 0.2 (unlearning).

The meaning of curves and symbols are the same as in case I.
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(b)
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T
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m2

m3

Fig. 12. T dependences of mµ. a = 0.15 and α = 0.02. Curves: RS solution, symbols: MCMCs. N = 90000.

Averages are taken from 10 samples. Vertical lines are error bars. (a) h = 0, (b) h = 0.2.
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Fig. 13. T dependences of mµ. a = 0.2, α = 0.02. Curves: RS solution, symbols: MCMCs. N = 90000.

Averages are taken from 10 samples. Vertical lines are error bars. (a) h = 0, (b) h = 0.2.

3.2.1 Temperature dependences of m1,m2 and m3

Results for cases 1 and 2 with correlation a = 0.15 are shown in Fig. 12. As in case I, the

M state disappears by unlearning. In cases 3 and 4, the correlation is increased to 0.2 from

0.15 in cases 1 and 2, and results are shown in Fig. 13. We found that the M state disappears

by unlearning for a = 0.2, as well. Furthermore, by comparing cases 1 and 2 we note that the

stability of the M state increases and that of the R state decreases as the correlation increases

as in case I.

Now, let us compare the results in case II with those in case I. By comparing Figs. 3 and 13,

we found that the existence of clusters reduces the temperature region where the M state is

stable. The reason for this seems that in case II, r increases, that is, the effect of non-retrieved

patterns is stronger than in case I, because of the existence of other clusters within which

the patterns are correlated. Furthermore, the existence of clusters causes more complicated

bifurcation structures, e.g., the first-order phase transition between two different mixed states

as shown in Fig 14.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

T

mmix

Fig. 14. T dependences of mmix. α = 0.02, a = 0.2, T = 0.5. Curves: RS solution.

3.2.2 h dependences of m1,m2, and m3

From Fig. 13, we note that at T = 0.45, only the M state exists at h = 0, whereas the M

state does not exist and the R state exists at h = 0.2. To study in more detail, fixing T = 0.45

and a = 0.2, we studied the h dependences of m1,m2, and m3 both in cases I and II. Comparing

Fig. 15 (a) and (b), we note that the M state disappears at a smaller values of h in case II than

in case I, and the R state appears at a larger value of h and disappears at a smaller value of
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h in case II than in case I. As a result, the existence region of h becomes narrower in case II

than in case I. Therefore, it is concluded that the stabilities of the R and M states reduce due

to the existence of clusters.
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Fig. 15. h dependences of mµ. a = 0.2, α = 0.02, and T = 0.45. Curves: RS solution, symbols: MCMCs.

N = 90000. Averages are taken from 10 samples. Vertical lines are error bars. (a) case I, N = 100000, (b) case

II, N = 90000.

3.2.3 h dependences of entropy

In Fig. 16, we show the h dependences of entropy for the R, M, and SG states. For all

states, their entropies are positive and these states are appropriate.
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(b)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  0.02  0.04  0.06  0.08  0.1

h

S

Fig. 16. h dependences of entropy. α = 0.02, a = 0.2, T = 0.45. Curves: RS solution. (a) 0 ≦ h ≦ 1 (b)

0 ≦ h ≦ 0.1.

3.2.4 h dependences of AT stability

In Fig. 17, we show the h dependences of eigenvalues of the replicon mode for the Hessian

of the RS solutions. Similar to case I, the R and M states are AT-stable, but the SG state is

AT-unstable.

3.2.5 h dependences of free energy

In Fig. 18, we show the h dependences of free energy for the R, M, and SG states. The

free energy of the SG state is lowest among all states for any h, and this result is different from
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Fig. 17. h dependences of eigenvalues of the replicon mode λ. α = 0.02, a = 0.2, T = 0.45. Curves: RS

solution. (a) 0 ≦ h ≦ 1 (b) 0 ≦ h ≦ 0.1.

the result that the M state has lowest free energy at small values of h in case I. We obtained

the following results when h is changed.

(1) h < h1(∼ 0.005). The M and SG states exist. fSG < fM.

(2) h1 < h < h2(∼ 0.0925). Only the SG state exists.

(3) h2 < h < h3(∼ 0.42):.The R state appears. fSG < fR.

(4) h3 < h. Only the SG state exists.

At T = 0.45, the coexistence region of the R and M states does not exist. Thus, the change in

stability between the R and M states does not exist in case II different from in case I.
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Fig. 18. h dependences of fRS . α = 0.02, a = 0.2, T = 0.45. Curves: RS solution. (a) 0 ≦ h ≦ 1 (b) 0 ≦ h ≦

0.1.

4. Summary and Discussion

In conventional Hopfield Model, not only retrieval (R) state but also mixed (M) states

are stable. According to previous research, unlearning of mixed states decrease stability of

the M states and increase that of the R state for a finite number of embedded patterns. We

studied unlearning of a mixed state for the extensive loading case that the number of patterns

p is proportional to that of neurons N and for the case that the correlation between patterns

exists. We focused on the following two cases; case I: Only three patterns are correlated and

the rest of patterns are uncorrelated, case II: Ensemble of clusters composed of correlated

patterns such that there is no correlation between the clusters. We used the replica method
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and derived the saddle point equations under the ansatz of the replica symmetry. We per-

formed the Markov chain Monte Carlo simulations (MCMCs) and compared the numerical

and theoretical results.

First, we summarize the results for case I. We examined the temperature dependence of

some order parameters: the overlap between embedded patterns {ξ1
i
} ∼ {ξ3

i
} and the neuron

configuration {S i}, m1, m2, m3, and the spin glass order parameter, q. We performed MCMCs

for the following four cases with the different values of correlation a and unlearning coeffi-

cient h: (1) a = 0, h = 0, (2) a = 0, h = 0.2, (3) a = 0.2, h = 0, (4) a = 0.2, h = 0.2. Comparing

(1) and (2), we noted that the M state is removed by unlearning for a = 0. However, the tem-

perature region where the R state is stable is also reduced. From the results of (1) and (3),

we found that the stability of the M state increases and that of the R state decreases with the

increase of a. For a = 0.2 and T = 0.5, we also examined the h dependence and found that

the R state is removed for too large h. Thus, we should set h appropriately. From the results

of h dependences, the retrieval solution R4, which is the state with the large overlap m4 and

is uncorrelated with the target mixed state for unlearning, is not affected by unlearning. In a

spin glass (SG) state, we observed the two values of q, one of which is near to the replica

symmetric (RS) solution and the other is different from the RS solution. When we performed

the simulations with 10 random initial states, the M state appeared for all of the initial states.

Thus, we consider that the basin of the M states are larger than that of the R state.

We examined the h dependence of entropy and confirmed that entropy is positive for the

R, M, and SG states. In addition, from the results of the h dependence of the eigenvalue

corresponding to the replicon mode λ we found that the RS solution is stable for the R and M

states but is unstable for the SG state. Therefore, it is reasonable that there exists disagreement

between the theoretical and numerical results for the SG state. Furthermore, we studied the

h dependence of the free energy. From the results for the R and M states, we noted that the

stability changes as h changes. In ascending order of h, the stability changes as follows; only

the M state is stable, the R state is restored but it is metastable, the R state is stable and the

M state is metastable, the M state is removed, and the R state is removed. Moreover, the free

energy of R4 is lower than that of the SG state, and they are more stable than the R and M

states when h is small but more unstable when h is large.

Next, we summarize the results for case II. We compared the results of the temperature

dependence for the following four cases: (1) a = 0.15, h = 0, (2) a = 0.15, h = 0.2, (3) a =

0.2, h = 0, (4) a = 0.2, h = 0.2. As is in the case I, the M state is removed by unlearning.

Comparing I(3) and II(3), we found that the stable region of the M state for case II become
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narrower than that in case I. Furthermore, we compared the results of the h dependence for

cases I and II with a = 0.2, T = 0.45, and noted that the M state is removed at smaller h for

case II than case I. Moreover, the stable region of the R state decreases. Thus, we confirmed

that the correlation between embedded patterns decreases the stability of the R and M states.

We studied the h dependence of entropy and λ. We confirmed that entropy is positive for

the R, M, SG states, and the RS solution is stable for the R and M states and unstable for

the SG states as in case I. For a = 0.2 and T = 0.45, the R state is restored after the M state

is removed. Thus, the coexistence of the R and M states is confirmed in case I, but it isn’t

observed in case II. In contrast to case I, the SG state is always more stable than the R and M

states.

Now, let us discuss the stability reduction of solutions due to the existence of clusters. In

both cases I and II, by comparing temperature regions and the range of h where the R and M

states exist, we confirmed that the stabilities of the R and M states become more weak in case

II than in case I. Furthermore, in case I, by the MCMCs using random initial configurations,

we found that the basin of the M state is much larger than that of the R state. Therefore, in

case II, it seems that the mixed states with a large basin exist in each cluster, and as a result,

each retrieval state and each mixed state are affected and their stabilities reduce.
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Fig. 19. T dependences of q in case II. α = 0.02, a = 0.2, h = 0. Curves: RS solution. , symbols: MCMCs.

N = 90000. (a) h = 0. Among upper two curves existing in low temperature, the upper one is for the R state and

the lower one is for the M state. (b) h = 0.2. The upper curve existing in low temperature is for the R state.

Next, we discuss the SG states. In case II, we performed simulated annealing (SA) at

a = 0.2 and h = 0.2 for N = 90000. We show the temperature dependences of q in Fig. 19.

In these figures for the R and M states, the sample average and standard deviation over 10

samples are shown, whereas results of 10 samples are shown for the SG state. From these

figures, we confirmed that there are several metastable states for the SG state. Thus, for the

SG state, it seems that the replica symmetry breaking (RSB) takes place. In case I, since the

stability of the M state is stronger than in case II, when the SA was performed at a = 0.2 and
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h = 0.2, the final states are the M or R state and the SG state does not appear, as shown in

Fig. 4(b). By setting to h = 0.4 in case I, we could reduce the existence temperature region

of the M state and observe the SG state. In Fig. 20 (a) and (b), we show the results by SA for

N = 10000 and N = 100000. From these figures, we confirmed that several metastable states

exist in case I, as well. Comparing the result for N = 10000 with that for N = 100000, we

note that the number of metastable states increases as N increases. In both cases I and II, it is

found that the SG state is AT-unstable. Furthermore, we examined the h dependence of q in

case II for a = 0.2 and T = 0.45 and found the SG state which has many metastable states.

What kind of the RSB takes place is one of future problems.
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Fig. 20. T dependences of q in case I. α = 0.02, a = 0.2, h = 0.4. Curves: RS solution. , symbols: MCMCs.

(a) N = 10000 (b) N = 100000.
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5. Appendix A. Derivation of the free energy in case I

In this appendix, we derive the free energy by the replica method. We start from the

replicated partition function,

Zn = e−β
n(p−h)

2 Tr{sρ
j
} exp{Nβ

2

∑

µ,ρ

(
1

N

N
∑

j=1

ξ
µ

j
s
ρ

j
)2 − hNβ

2
(

1

N

N
∑

j=1

ξmix
j s

ρ

j
)2}, (44)

where T is temperature and β = 1/T . By using the Hubbard-Stratonovich transformation, we

obtain

Zn = e−β
n(p−h)

2 Tr{sρ
j
}

∫ ∞

−∞

(

∏

µ,ρ

√

βN

2π
dmµρ

)

exp

{

βN
∑

µ,ρ

(

−
(m
µ
ρ)

2

2
+

1

N

N
∑

j=1

ξ
µ

j
s
ρ

j
mµρ

)}
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×
∫ ∞

−∞

(

∏

ρ

√

βN

2π
dmmix
ρ

)

exp

{

βN
∑

ρ

(

−
(mmix
ρ )2

2
+

√
−h

N

N
∑

j=1

ξmix
j s

ρ

j
mmix
ρ

)}

. (45)

Below, we study the case that the three patterns are correlated with each other and others are

uncorrelated. We assume that m1,m2,m3 and mmix is of the order of O
(

( 1
N

)0

)

and others are

higher order. We denote the average over {ξ(m)} and {ξµ} by [·]. Then, for µ ≥ 4, we have

[mµρ] =
1

N

N
∑

j=1

[ξ
µ

j
]s
ρ

j
= 0, (46)

[(mµρ)
2] =

1

N2

N
∑

j,k=1

[ξ
µ

j
ξ
µ

k
]s
ρ

j
s
ρ

k
. (47)

Because of [ξ
µ

j
ξ
µ

k
] = δ jk, we obtain

[(mµρ)
2] =

1

N2

N
∑

j

(s
ρ

j
)2 =

1

N
. (48)

Thus, m
µ
ρ = O( 1√

N
) for µ ≥ 4. Now, we set m

µ
ρ →

m
µ
ρ√
βN

for µ ≥ 4. By taking the average over

ξ
µ

j
for µ ≥ 4, we obtain,

[Zn] = e−β
n(p−h)

2 Tr{sρ
j
}

∫ ∞

−∞

(

∏

ρ,τ≤3

√

βN

2π
dmτρ

)(

∏

µ≥4,ρ

1
√

2π
dmµρ

)(

∏

ρ

√

βN

2π
dmmix
ρ

)

×
[

exp

{

βN
∑

τ≤3,ρ

(

−
(mτρ)

2

2
+

1

N

N
∑

j=1

ξτj s
ρ

j
mτρ

)

+ βN
∑

ρ

(

−
(mmix
ρ )2

2
+

√
−h

N

N
∑

j=1

ξmix
j s

ρ

j
mmix
ρ

)

+
∑

µ≥4,ρ

(

−
(m
µ
ρ)

2

2

)

+
β

2N

∑

µ≥4

∑

j

∑

ρ,σ

mµρm
µ
σs
ρ

j
sσj

}]

. (49)

Now, we take the average over ξτ
j

for τ = 1, 2, 3 and ξ
(m)

j
. Let us define A j as

A j ≡
1

2

∑

ξ
(m)
j
=±1

〈exp

{

βN

(

∑

τ≤3,ρ

1

N
ξτj s
ρ

j
mτρ +

∑

ρ

√
−h

N
ξmix

j s
ρ

j
mmix
ρ

)}

〉ξ1
j
,ξ2

j
,ξ3

j
exp

(

β

2N

∑

µ≥4

∑

ρ,σ

mµρm
µ
σs
ρ

j
sσj

)

.

We set ητ
j
≡ ξ(m)

j
ξτ

j
(τ = 1, 2, 3,mix). Then, ητ

j
takes 1 with the probability P and -1 with the

probability 1 − P. A j becomes

A j =
1

2

∑

ξ
(m)

j
=±1

〈exp

{

βN

(

∑

τ≤3,ρ

1

N
ητjξ

(m)

j
s
ρ

j
mτρ +

∑

ρ

√
−h

N
ηmix

j ξ
(m)

j
s
ρ

j
mmix
ρ

)}

〉η1
j
,η2

j
,η3

j

× exp

(

β

2N

∑

µ≥4

∑

ρ,σ

mµρm
µ
σs
ρ

j
sσj

)

.
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Here, 〈·〉{η1,η2,η3} means the average over η1, η2, η3 where ηµ takes ±1 with the probability
1±
√

a

2
.

Furthermore, we take the trace Trs
ρ

j
and put s

ρ

j
′=s

ρ

j
ξ

(m)

j
.

Trs
ρ

j
A j = Trs

ρ

j
′〈exp

{

βN

(

∑

τ≤3,ρ

1

N
ητj s
ρ

j
′mτρ +

∑

ρ

√
−h

N
ηmix

j s
ρ

j
′mmix
ρ

)}

〉η1
j
,η2

j
,η3

j
exp

(

β

2N

∑

µ≥4

∑

ρ,σ

mµρm
µ
σs
ρ

j
′sσj
′
)

.

Thus, we obtain

[Zn] = e−β
n(p−h)

2 Tr{sρ
j
}

∫ ∞

−∞

(

∏

ρ,τ≤3

√

βN

2π
dmτρ

)(

∏

µ≥4,ρ

1
√

2π
dmµρ

)(

∏

ρ

√

βN

2π
dmmix
ρ

)

× exp

{

−βN
∑

ρ

(

∑

τ≤3

(mτρ)
2

2
+

(mmix
ρ )2

2

)

−
∑

µ≥4,ρ

(m
µ
ρ)

2

2

}

×〈exp

{

βN
∑

ρ

(

∑

τ≤3

1

N

N
∑

j=1

ητj s
ρ

j
mτρ +

√
−h

N

N
∑

j=1

ηmix
j s

ρ

j
mmix
ρ

)}

〉{η1
j
,η2

j
,η3

j
} exp

(

β

2

∑

µ≥4

∑

ρ,σ

mµρm
µ
σqρσ

)

(50)

In the expression, we omitted ′ from s′ and define

qρσ ≡ 1

N

∑

j

s
ρ

j
sσj . (51)

Note that qρρ = 1. Therefore, we obtain

[Zn] = e−β
n(p−h)

2 Tr{sρ
j
}

∫ ∞

−∞

(

∏

ρ,τ≤3

√

βN

2π
dmτρ

)(

∏

µ≥4,ρ

1
√

2π
dmµρ

)(

∏

ρ

√

βN

2π
dmmix
ρ

)

×〈exp

{

βN
∑

ρ

(

∑

τ≤3

(

−
(mτρ)

2

2
+

1

N

N
∑

j=1

ητj s
ρ

j
mτρ

)

−
(mmix
ρ )2

2
+

√
−h

N

N
∑

j=1

ηmix
j s

ρ

j
mmix
ρ

)

〉{η1
j
,η2

j
,η3

j
}

× exp

{

−
∑

µ≥4,ρ

(m
µ
ρ)

2

2
+
β

2

∑

µ≥4

∑

ρ,σ

mµρm
µ
σqρσ

}

. (52)

The argument in the last exponential term is expressed as

−
∑

µ≥4,ρ

(m
µ
ρ)

2

2
+
β

2

∑

µ≥4

∑

ρ,σ

mµρm
µ
σqρσ = −1

2

∑

µ≥4

∑

ρσ

mµρKρσmµσ, (53)

where we define

Kρσ ≡ δρσ − βqρσ. (54)

Introducing the conjugate variable rρσ to qρσ, we obtain

[Zn] = e−β
n(p−h)

2 Tr{sρ
j
}

∫

∏

ρ,σ

(

dqρσ

)

∫ i∞

−i∞

∏

ρ,σ

(

iNαβ2

2

drρσ

2π

)

∫ ∞

−∞

(

∏

ρ,τ≤3

√

βN

2π
dmτρ

)
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×
(

∏

µ≥4,ρ

1
√

2π
dmµρ

)(

∏

ρ

√

βN

2π
dmmix
ρ

)

×〈exp

{

βN
∑

ρ

(

∑

τ≤3

(

−
(mτρ)

2

2
+

1

N

N
∑

j=1

ητj s
ρ

j
mτρ

)

−
(mmix
ρ )2

2
+

√
−h

N

N
∑

j=1

ηmix
j s

ρ

j
mmix
ρ

)}

〉{η1
j
,η2

j
,η3

j
}

× exp

{

−1

2

∑

µ≥4

∑

ρσ

mµρKρσmµσ −
∑

ρ,σ

Nαβ2

2
rρσ(qρσ −

1

N

∑

j

s
ρ

j
sσj )

}

. (55)

The integration with respect to m
µ
ρ (µ ≥ 4) is performed and we obtain

∫

(

∏

µ≥4,ρ

1
√

2π
dmµρ

)

exp

{

−1

2

∑

µ≥4

∑

ρσ

mµρKρσmµσ

}

= (det K)−(p−3)/2 = exp

{

− p − 3

2
ln det K

}

= exp

{

− p − 3

2
Tr ln K

}

= exp

{

− p − 3

2
Tr ln

(

(1 − β)E − βQ
)}

, (56)

where E is the n × n unit matrix and Q is the n × n matrix of which diagonal components are

zero and off diagonal components are qρσ. In order to take the average over s
ρ

j
, we rewrite the

relevant part as

〈Tr{sρ
j
} exp

{

β
∑

τ≤3,ρ

N
∑

j=1

ητj s
ρ

j
mτρ + β

√
−h

∑

ρ

N
∑

j=1

ηmix
j s

ρ

j
mmix
ρ +

∑

ρ,σ

αβ2

2
rρσ

∑

j

s
ρ

j
sσj

}

〉{η1
j
,η2

j
,η3

j
}

= exp

{

N〈ln Tr{sρ} exp

(

β
∑

τ≤3,ρ

ητsρmτρ + β
√
−h

∑

ρ

ηmixsρmmix
ρ +

∑

ρ,σ

αβ2

2
rρσsρsσ

)

〉{η1,η2,η3}

}

.

(57)

Here, we used the self averaging property and replace 1
N

∑

j g({ητ
j
}) by 〈g({ητ})〉ητ since N ≫ 3.

Thus, we obtain

[Zn] = e−β
n(p−h)

2

∫

∏

ρ,σ

(

dqρσ

)

∫ i∞

−i∞

∏

ρ,σ

(

iNαβ2

2

drρσ

2π

)

∫ ∞

−∞

(

∏

τ≤3,ρ

√

βN

2π
dmτρ

)(

∏

ρ

√

βN

2π
dmmix
ρ

)

× exp

{

N

{

−β
∑

τ≤3,ρ

(mτρ)
2

2
− β

∑

ρ

(mmix
ρ )2

2
− α

2
Tr ln

(

(1 − β)E − βQ
)

− αβ
2

2

∑

ρ,σ

rρσqρσ

+〈ln Tr{sρ} exp

(

∑

ρ,σ

αβ2

2
rρσsρsσ + β

∑

τ≤3,ρ

ητsρmτρ + β
√
−h

∑

ρ

ηmixsρmmix
ρ

)

〉{η1,η2,η3}

}

}

,

(58)

where α ≡ p

N
. We study the case N ≫ 1 and thus the integration can be estimated at the

saddle point. Assuming the self-averaging property, the free energy per neuron f = [F]/N =

−T [ln Z]/N is expressed as

f = −T [ln Z]/N = −1

β

[Zn] − 1

nN
. (59)
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Thus, we obtain

f =
1

n

∑

τ≤3,ρ

(mτρ)
2

2
+

1

n

∑

ρ

(mmix
ρ )2

2
+
α

2nβ
Tr ln

(

(1 − β)E − βQ
)

+
αβ

2n

∑

ρ,σ

rρσqρσ

− 1

nβ
〈ln Tr{sρ} exp(βHη)〉{η1,η2,η3}, (60)

βHη =
∑

ρ,σ

αβ2

2
rρσsρsσ + β

∑

τ≤3,ρ

ητsρmτρ + β
√
−h

∑

ρ

ηmixsρmmix
ρ . (61)

By making the variable transformation mmix
ρ →

√
−hmmix

ρ , we obtain

f =
1

n

∑

τ≤3,ρ

(mτρ)
2

2
− h

1

n

∑

ρ

(mmix
ρ )2

2
+
α

2nβ
Tr ln

(

(1 − β)E − βQ
)

+
αβ

2n

∑

ρ,σ

rρσqρσ

− 1

nβ
〈ln Tr{sρ} exp(βHη)〉{η1,η2,η3}, (62)

βHη =
∑

ρ,σ

αβ2

2
rρσsρsσ + β

∑

τ≤3,ρ

ητsρmτρ − βh
∑

ρ

ηmixsρmmix
ρ . (63)

Here, 〈·〉{η1,η2,η3} means the average over η1, η2, η3 where ηµ takes ±1 with the probability
1±
√

a

2
.

Note that qρρ = 1 in the above expression. The following relations hold.

mµρ =
1

N

∑

j

ξ
µ

j
s
ρ

j
, (64)

rρσ =
1

α

∑

µ≥4

mµρm
µ
σ (65)

6. Appendix B. 1RSB solution in case I

By the standard recipe, the 1RSB solution is obtained and is expressed as

f1RSB =
∑

τ≤3

1

2
(mτ)2 − h

2
(mmix)2

+
α

2β

[

m1 − 1

m1

ln

(

1 − β(1 − q1)

)

+
1

m1

ln

{

1 − β
(

1 + (m1 − 1)q1 − m1q0

)}]

+
αβ

2
r1

−α
2

q0

1 − β
(

1 + (m1 − 1)q1 − m1q0

) +
αβ

2

(

(m1 − 1)r1q1 − m1r0q0

)

− 1

βm1

〈
∫

Du ln

∫

Dv coshm1 Ξ〉{η1,η2,η3} −
1

β
ln 2, (66)

Ξ = β

(√
αr0u +

√

α(r1 − r0)v +
∑

τ≤3

ητmτ − hηmixmmix

)

, (67)

mτ = 〈ητ
∫

Du

∫

Dv(coshΞ)m1 tanhΞ
∫

Dv(coshΞ)m1

〉{η1,η2,η3}, τ = 1, 2, 3, (68)
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mmix = 〈ηmix

∫

Du

∫

Dv(coshΞ)m1 tanhΞ
∫

Dv(coshΞ)m1

〉{η1,η2,η3}, (69)

q0 = 〈
∫

Du

(

∫

Dv(coshΞ)m1 tanhΞ
∫

Dv(coshΞ)m1

)2

〉{η1,η2,η3}, (70)

q1 = 〈
∫

Du

∫

Dv(coshΞ)m1 tanh2 Ξ
∫

Dv(coshΞ)m1

〉{η1,η2,η3}, (71)

r0 =
q0

{

1 − β
(

1 + (m1 − 1)q1 − m1q0

)}2
, (72)

r1 = r0 +
q1 − q0

(

1 − β(1 − q1)

){

1 − β
(

1 + (m1 − 1)q1 − m1q0

)} , (73)

α

2β
ln

{

1 − β(1 − q1)

1 − β
(

1 + (m1 − 1)q1 − m1q0

)

}

+
1

β
〈
∫

Du ln

∫

Dv(coshΞ)m1〉{η1,η2,η3}

=
α

2
m1(q1 − q0)

1 − β
(

1 + (m1 − 1)q1

)

{

1 − β
(

1 + (m1 − 1)q1 − m1q0

)}(

1 − β(1 − q1)

)

+
m1

β
〈
∫

Du

∫

Dv(coshΞ)m1 ln(coshΞ)
∫

Dv(coshΞ)m1

〉{η1,η2,η3}. (74)

7. Appendix C. Derivation of the free energy in case II

In this appendix, we formulate case II in a rather general situation, that is, there are M

clusters, and in the ωth cluster, the number of patterns is pω. The νωth pattern in the ωth

cluster is represented by {ξ(ω,νω)

j
}. We assume that patterns in the cluster ω = 1 and mixed

states composed of these patterns are retrieved. We study unlearning the following mixed

state ξmix,

ξmix
i = sgn(ξ

(1,1)

i
+ ξ

(1,2)

i
· · · + ξ(1,p1)

i
). (75)

Now, we derive the free energy. From the Hamiltonian defined in eq. (34), and introducing n

replicas s
ρ

i
, (ρ = 1, · · · , n), we obtain

[Zn] = e−βn
p−h

2 Tr{S ρ
j
}

∫ ∞

−∞

















∏

ρ,ν1≦p

√

βN

2π
dm(1,ν1)
ρ

















∫ ∞

−∞

















∏

ρ

√

βN

2π
dmmix
ρ

















∫ ∞

−∞

















∏

ρ,ω≧2,νω

1
√

2π
dm(ω,νω)
ρ

















× exp















−βN
















∑

ρ,ν1≦3

(m
(1,ν1)
ρ )2

2
+

∑

ρ

(mmix
ρ )2

2






























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×
















exp















βN
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∑

j

ξ
(1,ν1)

j
S
ρ

j
m(1,ν1)
ρ +

∑

ρ

√
−h

N

∑

j

ξmix
j S

ρ

j
mmix
ρ















































× exp















−
∑

ρ,ω≧2,νω

(m
(ω,νω)
ρ )2

2















×
















exp















√

β

N

∑

ρ,ω≧2,νω

∑

j

ξ
(ω,νω)

j
S
ρ

j
m(ω,νω)
ρ































, (76)

where we define m
(ω,νω)
ρ = 1

N

∑

i ξ
(ω,νω)s

ρ

i
, and mmix

ρ = 1
N

∑

i ξ
mixs

ρ

i
. Here, m

(ω,νω)
ρ = O(1/

√
N)

and we replace m
(ω,νω)
ρ by m

(ω,νω)
ρ /

√
βN for ω ≧ 2. The term for ω ≧ 2 is calculated as follows.
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
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β
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


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∑
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ω

∑
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ρ m
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σ qρσ
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
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






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








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, (77)

where qρσ =
1
N

∑

i s
ρ

i
sσ

i
. Thus, we obtain

∏
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, (78)

where we define

K
νων

′
ω

ρσ = δνων′ω(δρσ − βqρσ) + (1 − δνων′ω)(−βaqρσ). (79)

Let us define K(ω) for the ωth cluster as follows.
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(80)

where K(ω) is the npω×npω matrix and K1 and K2 are the n×n matrices. The integration with

respect to m
(ω,νω)
ρ (ω ≧ 2) is performed and we obtain

∫ ∞
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∑
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


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



= exp

{

−M − 1

2
log(det K(ω))

}

. (81)

Now, we study the case that pω is constant and is set to p, and thus we put K(ω) = K. As is in

the case I, we set ην1
j
≡ ξ(1,ν1)

j
ξ

(m)

j
, ηmix

j
≡ ξmix

j
ξ

(m)

j
, and (S

ρ

j
)′ ≡ S

ρ

j
ξ

(m)

j
. The integration can be
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estimated at the saddle point and we obtain

[Zn] ≃ e−βn
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(82)

where we define m
ν1
ρ ≡ m

(1,ν1)
ρ and replace mmix

ρ by
√
−hmmix

ρ and omit the superscript ′ from

S ρ ′. 〈·〉η1,··· ,ηp and rρσ are the same as in case I.

We assume the replica symmetry and K in Eq.(80) is expressed as

K =
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. (83)

K1 and K2 can be diagonalized by an orthogonal matrix U1. We define the eigenvalues of K1

and K2 as λ1, · · · , λn、 λ′1, · · · , λ′n, respectively.
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Let us define the matrix U which diagonal blocks are U1 and off diagonal blocks are zero.

Thus we obtain
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= UT KU. (85)

detΛ =

n
∏

ρ=1

(λρ − λ′ρ)(p−1){(p − 1)λ′ρ + λρ}. (86)

λρ and λ′ρ (ρ = 1, · · · , n) are expressed as follows.

λ1 = 1 − β + βq − nβq , λ2 = · · · = λn = 1 − β + βq,

λ′1 = −βa(1 − q + nq) , λ′2 = · · · = λ′n = −βa(1 − q).
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Thus we obtain

log(det K) = n

[

(p − 1)

{
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. (87)

Therefore, the replica symmetric free energy fRS is obtained as
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8. Appendix D. Derivation of the AT stability in case II

Here, we derive the AT stability in case II. We calculate the following A(ρσ)(γδ) for K in

eq. (80).

A(ρσ)(γδ) =
M

2βN

∂

∂qγδ

(

1

det K

∂

∂qρσ
det K

)

. (89)

The matrices K′1 and K′2 are defined

K′1 : (K′1)ασ = −βδαρ, for α = 1, · · · , n, (K′1)αβ = (K1)αβ for α, β = 1, · · · , n, (β , σ),

K′2 : (K′2)ασ = −βaδαρ, for α = 1, · · · , n, (K′2)αβ = (K2)αβ for α, β = 1, · · · , n, (β , σ),

where ρ and σ are fixed indices with ρ < σ.
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where K̃σρ is a cofactor of the respective (σ, ρ) components. Thus we obtain

A(ρσ)(γδ) = − pM

N

∂

∂qγδ

{

1

det K

(

K̃σρ + aK̃σ(n+ρ) + · · · + aK̃σ((p−1)n+ρ)
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{
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(K−1)(n+ρ)σ + · · · + (K−1)((p−1)n+ρ)σ

)}

. (91)

We calculate ∂(K−1)xy/∂qγδ as in case I. Let us introduce the variables x, y, α, and β which

take values from one to np as distinguished from ρ, σ. We define the label of the block which

α and β belong to as l and l′, respectively. Then we obtain

∂Kαβ

∂qγδ
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(92)

Therefore,
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Let us define K−1 as
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Thus, A(ρσ)(γδ) is expressed as

A(ρσ)(γδ) = −αβ
{

(1 + (p − 1)a2)
(

L
ργ

1
Lδσ1 + L

ρδ

1
L
γσ

1

)

+a(p − 1)(2 + (p − 2)a)
(

L
ργ

1
Lδσ2 + L

ρδ

1
L
γσ

2
+ L

ργ

2
Lδσ1 + L

ρδ

2
L
γσ

1

)

+ (p − 1)(1 + 2(p − 2)a + (p2 − 3p + 3)a2)
(

L
ργ

2
Lδσ2 + L

ρδ

2
L
γσ

2

)}

.

Let us derive the concrete formula of L1 and L2. From the relation KK−1 = E, we obtain

K1L1 + K2L2 + (p − 2)K2L2 = En, (95)

K1L2 + K2L1 + (p − 2)K2L2 = 0. (96)

Then, we obtain

L1 = L2 + L4, (97)

L2 = −L3K2L4, (98)
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L3 = (K1 + (p − 1)K2)−1 , (99)

L4 = (K1 − K2)−1. (100)

By taking the limit of n→ 0, the diagonal component li and the off diagonal component li of

Li are expressed as follows.

l1 = l2 + l4,

l1 = l2 + l4,

l2 = −βa{−l3l4 + (1 − 2q)l3 l4 + q(l3l4 + l3l4)},

l2 = −βa{−(1 − 2q)(l3l4 + l3l4) + (2 − 3q)l3 l4 − ql3l4},

l3 =
1 − β(1 − 2q)(1 + (p − 1)a)

{1 − β(1 − q)(1 + (p − 1)a)}2 ,

l3 =
βq(1 + (pa − 1)a)

{1 − β(1 − q)(1 + (p − 1)a)}2 ,

l4 =
1 − β(1 − 2q)(1 − a)

{1 − β(1 − q)(1 − a)}2 ,

l4 =
βq(1 − a)

{1 − β(1 − q)(1 − a)}2 .

(101)
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