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We study a model of an idiotypic immune network which was introduced by N. K. Jerne.
It is known that in immune systems there generally exist several kinds of immune cells
which can recognize any particular antigen. Taking this fact into account and assuming that
each cell interacts with only a finite number of other cells, we analyze a large scale immune
network via both numerical simulations and statistical mechanical methods, and show that
the distribution of the concentrations of antibodies becomes non-trivial for a range of values
of the strength of the interaction and the connectivity.

§1. Introduction

There are many numerical and theoretical studies of biological networks in which
there is a global coupling between the constituent elements, e.g. Hopfield-type neural
networks and networks of Kuramoto-type phase oscillators.1),2) In contrast, rela-
tively few studies have been carried out of networks where each component interacts
with only a small number of randomly selected other components. One such system
is the immune network, introduced by Jerne3) to explain the activation of immune
cells in the absence of external stimulation.

Let us briefly summarize the main mechanism of cell-interaction in the immune
system. Its main constituents are B-lymphocytes (B-cells), T-lymphocytes (T-Cells)
and antibodies produced by B-cells. B-cells and T-cells have receptors on their
surfaces. The receptors of B-cells are antibodies, which recognize and connect to
antigens in order to neutralize them; they have specific 3-dimensional structures
which are called ‘idiotypes’. A family of B-cells which are generated from a given
B-cell is called a ‘clone’. Hence, all members of a clone as well as the antibodies
produced by this clone have the same idiotype. In general, each antibody could
present several 3-dimensional structures which can be recognized by other B-cells.
This then generates, indirectly, an effective interaction between antibodies.

This paper is organized as follows. In §2 we formulate the model, followed by
a summary of previous studies in §3. In §4, we present the results of our present
study. Section 5 is devoted to a summary and a discussion.

§2. Formulation of the model

Taking the roles of T-cells into account, Varela et al. introduced a dynamical
system model for B-cells and antibodies.4) The specific equations for the dynamics
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of the concentrations fi of antibodies and bi of B-cells in this model are

d

dt
fi = −K1σi(f)fi − K2fi + K3M [σi(f)]bi , (2.1)

d

dt
bi = −K4bi + K5P [σi(f)]bi + K6 , (2.2)

where i = 1, . . . , N labels the various clones, of which there are N in total. We
abbreviate f = (f1, . . . , fN ). The function σi(f) =

∑N
j=1 mijfj represents the

sensitivity of the system to the i-th idiotype, and the so-called maturation and
proliferation functions M [σ] and P [σ] are defined as M [σ] = e−[S−1

m log(σ/µm)]2 and
P [σ] = e−[S−1

p log(σ/µp)]2 , respectively. These latter functions embody the role of
T-cells in the system. The control parameters {K1, . . . , K6} have been determined
empirically. The matrix {mij}, with non-negative entries and with mii = 0 for all i,
defines the network connectivity.

§3. Previous results

In this section we summarize our previous results on the above model.5),6) First
we turn to numerical simulations. We first studied the (simplest) case of global
coupling, by taking uniform interactions of the form mij = κ

N . Here, the average
antibody and B-cell concentrations f̄ ≡ 1

N

∑
i fi and b̄ ≡ 1

N

∑
i bi obey relatively

simple differential equations. For the parameter values that we adopted, stable
solutions were found to be the trivial fixed point (f̄ , b̄) = (0, K6

K4
) and a non-trivial

fixed point (f̄ , b̄) = (f̄∗, b̄∗). In either case one has fi = f̄ and bi = b̄ for all i, i.e. all
clones have the same concentration and the system is uniform. This is undesirable
and unnatural for the immune system. Next we studied the case where the average
number c of interactions per clone is proportional to the number of clones N . We
also took the strength of those interactions present to be uniform, i.e. mij ∈ {0, κ

c }.
Numerical simulations showed that the distribution p(f) of the concentrations {fi}
always converges to the trivial distribution δ(f) as N → ∞. Therefore, we were
again led to an unnatural result for the immune system. Finally, we turned to the
case of finite connectivity (i.e. finite c, independent of N) as found in real immune
systems. Defining mij ∈ {0, κ}, we performed numerical simulations and found that
as N → ∞, the distribution p(f) of antibody concentrations converges once more to
δ(f) for κ = 0.2, but for κ = 2 or 20 it converges to a non-trivial distribution. The
latter result is biologically meaningful for immune systems.

Next, we summarize the theoretical results obtained so far. To analyze the above
model mathematically we used the Dynamical Replica Theory (DRT),7) which results
in a nonlinear partial differential equation (PDE) for the joint distribution p(f, b, σ)
of single-clone variables (fi, bi, σi) (i.e. antibody and B-cell concentrations, and clone
sensitivities). It is, however, quite difficult to solve this diffusion equation (or that
of the marginal distributions) numerically, even when using approximations, due to
the required resolution in the 3-dimensional space of the arguments (f, b, σ). Hence,
here we turn to a simplified model in which the concentrations of B-cells, rather than
evolving according to Eq. (2.2), are kept constant at the value b0 = K6

K4
.
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§4. Results of the present study

Upon replacing Eq. (2.2) by b = b0 = K6
K4

, the remaining equation (2.1) for fi

becomes
d

dt
fi = −K1σifi − K2fi + K3M(σi)b0 . (4.1)

As might have been expected, if c is of the order of N and the strength of interactions
present is uniform, the antibody distribution p(f) once more converges to δ(f). The
biologically relevant regime is therefore again that of finite connectivity: mij ∈ {0, κ},
with c finite (independent of N). We performed numerical simulations of the network
defined by Eq. (4.1), for several values of N , c and κ. Typical results are shown in
Fig. 1; they suggest that p(f) converges to a non-trivial function as N → ∞.

Next we turn to theoretical approaches. In DRT one finds the following nonlinear
partial differential equation for the joint distribution p(f, σ) of single-clone antibody
concentrations f and clone sensitivities σ (see Ref. 6)):

∂

∂t
p(f, σ) = − ∂

∂f

[
F (f, σ)p(f, σ)

]
− κc

∂

∂σ

[
〈B(f, σ; f ′, σ′)F (f ′, σ′)〉p(f, σ)

]
, (4.2)

where F (f, σ) = K3M [σ]b0 −K1σf −K2f and 〈G(f ′, σ′)〉 =
∫

df ′dσ′p(f ′, σ′)G(f ′, σ′).
The quantity B(. . .) is a complicated object, which makes the numerical solution of
Eq. (4.2) prohibitively difficult. Rational approximations are e.g. (see Ref. 6) for
details)

1. NSC — neglecting site correlations: B(f, σ; f ′, σ′) = 1.
2. ANN — annealed approximation: B(f, σ; f ′, σ′) = p(f,σ−κf ′)p(f ′,σ′−κf)

p(f,σ)p(f ′,σ′) .
We explored direct numerical calculations using both NSC and ANN approximations,
but we have not yet obtained convergent solutions. Instead, we exploit the fact that
Eq. (4.2) is of the Liouville form, allowing us to write the solution p(f, σ) formally as

p(f, σ) =
∫

df0dσ0 p0(f0, σ0)δ[f − f∗(t; f0, σ0)]δ[σ − σ∗(t; f0, σ0)] , (4.3)

where f∗(t; f0, σ0) and σ∗(t; f0, σ0) are the solutions of the underlying deterministic
ordinary differential equations. In this case we can only use NSC (for technical
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Fig. 1. The distribution p(f) of antibody concentrations, for the finitely connected network with

c = 5. Solid line: N = 800, dashed line: N = 400, dotted line: N = 200. Left: κ = 2. Right:

κ = 10.
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Fig. 2. The distribution p(f) of antibody concentrations, for the finitely connected network with

κ = 2 (left) and κ = 10 (right). We compare the solutions of the Liouville equation (two

examples, solid and dashed) with the results of numerical simulations (at N = 800, dotted).

reasons). In Fig. 2 we compare the results of numerical evaluation of Eq. (4.3),
within NSC; in spite of the crude nature of the NSC approximation, the results
agree qualitatively.

§5. Summary and discussion

In this paper we studied an idiotypic dynamical system immune network model
with finite connectivity. We restricted ourselves to the simplified version, in which
only the concentrations of antibodies change and those of B-cells remain fixed. Nu-
merical simulations revealed that the distribution p(f) of antibody concentrations
can acquire a nontrivial shape as the number of clones N tends to ∞, except for
small values of the interaction strength κ, where it converges to δ(f) (i.e. all anti-
bodies disappear) and the system is meaningless as an immune system. We derived
partial differential equation for p(f), using the DRT formalism. Using the Liouville
form of this equation, we could calculate p(f) numerically within a specific approx-
imation (NSC). We compared the distributions thus obtained with those measured
in numerical simulations and obtained qualitatively good agreement. We also tried
to solve the PDE for joint distribution of antibody concentrations and clone sensi-
tivities p(f, σ) numerically by using NSC and ANN approximations, unfortunately
without finding numerical convergence yet; this is therefore left for future work.

It is a great pleasure for the authors to dedicate this paper to Professor Yoshiki
Kuramoto on the occasion of his retirement from Kyoto University.
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