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We study phase oscillator networks with distributed natural frequencies and classical

XY models, both of which have a class of infinite-range interactions in common. We find

that the integral kernel of the self-consistent equations (SCEs) for oscillator networks

corresponds to that of the saddle point equations (SPEs) for XY models, and that the

quenched randomness (distributed natural frequencies) corresponds to thermal noise.

We find a sufficient condition that the probability density of natural frequency distribu-

tions is one-humped, so that the kernel in an oscillator network is strictly decreasing, as

in the XY model. Furthermore, taking the uniform and Mexican-hat-type interactions,

we prove the one-to-one correspondence between the solutions of the SCEs and SPEs.

As an application of the correspondence, we study the associative-memory-type inter-

action. In the XY model with this interaction, there exists a peculiar one-parameter

family of solutions. For the oscillator network, we find a nontrivial solution, i.e., a limit

cycle oscillation.

Synchronization phenomena prevail in nature1,2) and have drawn many researchers.

Among them, Winfree studied biological rhythms and introduced a phase description.3)

Later, Kuramoto proposed a seminal model of synchronization-desynchronization tran-

sitions, the so-called Kuramoto model.4) Since then, many studies on the Kuramoto
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model and its extensions have been carried out.5,6) On the other hand, the classical XY

models have been studied intensively and extensively, mainly for short range interac-

tions.7) If the interactions are the same, complex order parameters are also the same in

both models. In the course of our study of a phase oscillator network with an infinite-

range interaction,8) we investigated the classical XY model with the same interaction

and found that complex order parameters obey similar equations in both models.9)

It is obvious that the phase oscillator network with the uniform natural frequency

is equivalent to the classical XY model with a temperature of zero if the interaction

is common in the two models. It is quite nontrivial, however, whether there exists

some correspondence between the phase oscillator network with distributed natural

frequencies and the classical XY model at nonzero temperatures, because the former is

a deterministic nonequilibrium system with quenched randomness, whereas the latter

is a system subject to thermal noise, which changes with time, and is analyzed on

the basis of the equilibrium statistical mechanics. In this paper, we report that there

exists some correspondence between these two quite different models. We treat a class

of interactions for which the Hamiltonian is expressed by order parameters, and derive

the correspondence between the probability density functions for phases, and between

the self-consistent equations (SCEs) for the phase oscillator network and the saddle

point equations (SPEs) for the XY model. We also find a sufficient condition for the

probability density of natural frequency distributions so that the precise correspondence

holds in both models, and we also find that the quenched randomness corresponds to

thermal noise. Furthermore, we study the uniform interaction and the Mexican-hat-type

interaction on a circle, and prove the one-to-one correspondence of the solutions in both

models. Finally, as an application, we study the associative-memory-type interaction.

For the XY model with this interaction, there exists a peculiar solution, namely, a

one-parameter family of solutions that we call the continuous attractor.10) Through

the correspondence, we immediately obtain the SCEs for the oscillator network. We

theoretically and numerically study both models and find that the continuous attractor

changes to a noisy limit cycle oscillation in the oscillator network.

Phase oscillator network

Let us consider N phase oscillators. Let φ′
j be the phase of the jth oscillator, and assume
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that it obeys the following differential equation:

d

dt
φ′
j = ωj +

N∑
k=1

Jjk sin(φ
′
k − φ′

j). (1)

Here, ωj is the natural frequency and it is drawn from the probability density g(ω). We

assume that Jjk = Jkj, the mean value of ω is ω0, and g(ω) is symmetric with respect

to ω0,

g(ω0 + x) = g(ω0 − x). (2)

We put φj = φ′
j − ω0 and define Aj and αj by

Aje
iαj =

N∑
k=1

Jjke
iφk . (3)

Since we are interested in stationary states, we assume that Aj and αj do not depend

on time. By defining ψj = φj − αj, the evolution equation becomes

dψj/dt = ωj − ω0 − Aj sinψj. (4)

Let n̂(φ′, t, j) be the probability density of φ′ for the jth oscillator at time t. Assuming

a stationary rotation of the probability density and defining n(ψ, j) ≡ n̂(φ′, t, j), the

continuity equation becomes

∂

∂t
n(ψ, j) = − ∂

∂ψ

((
ωj − ω0 − Aj sinψ

)
n(ψ, j)

)
. (5)

Its stationary solution is(
ωj − ω0 − Aj sinψj

)
n(ψ, j) = Cj, (6)

n(ψ, j) = ns(ψ, j) + nds(ψ, j), (7)

where ns and nds are densities for the synchronized and desynchronized oscillators,

respectively. For the stable synchronized oscillators, we obtain

ns(ψ, j) = g(ω0 + Aj sinψ)Aj cosψ, |ψ| < π/2. (8)

XY model

The classical XY spins are denoted byXj = (cosφj, sinφj), j = 1, 2, · · · , N . The Hamil-

tonian is given by

H = −
∑
j<k

Jjk cos(φj − φk) = −1

2

∑
j,k

Jjk cos(φj − φk) + C, (9)

where C =
∑

j Jjj/2. The equilibrium state is described by the canonical distribution

Peq = e−βH/Z, where Z is the partition function, β = 1/T , and T is the temperature.
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We put kB = 1.

Interaction and order parameters

We consider the following interaction:

Jjk =
1

N

L∑
l=1

alql,jql,k, (10)

where al > 0 and ql,j are real numbers. We define the order parameters as

Qle
iΦl = Ql,R + iQl,I =

1

N

N∑
j=1

ql,je
iφj , l = 1, · · · , L. (11)

Therefore, in the XY model, the Hamiltonian is expressed as

H = −N
2

L∑
l=1

al(Q
2
l,R +Q2

l,I) + C. (12)

By the saddle point method,11) we obtain the partition function and the probability

density function n(φ, j) of φj for the jth spin as

Z ∝ exp[N(−β
2

L∑
l=1

alQ
2
l +

1

N

N∑
j=1

Ωj)], (13)

exp[Ωj] =

∫ 2π

0

dφj exp[β
L∑
l=1

alql,j(Ql,R cosφj +Ql,I sinφj)]

= 2πI0(βΞj), (14)

Ξj =

√√√√(
L∑
l=1

alql,jQl,R)2 + (
L∑
l=1

alql,jQl,I)2, (15)

Ξj cosφ
0
j =

L∑
l=1

alql,jQl,R, Ξj sinφ
0
j =

L∑
l=1

alql,jQl,I, (16)

n(φ, j) =
exp[βΞj cos(φ− φ0

j)]

2πI0(βΞj)
. (17)

Here, In(x) is the nth-order modified Bessel function,

In(x) =
1

2π

∫ 2π

0

dθ exp[x cos θ] cos(nθ). (18)

n(φ, j) is the so-called von Mises distribution. This function corresponds to Eq. (8).

The SPEs are

Qle
iΦl =

1

N

N∑
j=1

∫ 2π

0

dφj exp[−Ωj + β
L∑

l′=1

ql′,j(Ql′,R cosφj +Ql′,I sinφj)]ql,je
iφj
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=
1

N

N∑
j=1

I1(βΞj)

I0(βΞj)
ql,je

iφ0
j . (19)

Furthermore, we obtain the following relation from Eqs. (3) and (10):

Aje
iαj = Ξje

iφ0
j . (20)

In the oscillator network, the SCEs are

Qle
iΦl =

1

N

N∑
j=1

2

∫ π/2

0

dψg(ω0 + Aj sinψ)Aj cos
2 ψ ql,je

iαj . (21)

The desynchronized solutions do not contribute to the order parameters due to assump-

tion (2).

Correspondence of integral kernels and that of randomness

Let us define the following functions and coefficients:

u(x) ≡ I1(x)/[xI0(x)], (22)

ḡω0,σ(x) ≡ 2

∫ π/2

0

dψg(ω0 + x sinψ) cos2 ψ, (23)

ūβ(x) ≡ βu(βx). (24)

Using these functions and Eq. (20), SPEs (19) and SCEs (21) are rewritten as

Qle
iΦl =

1

N

N∑
j=1

Ajūβ(Aj)ql,je
iαj , (25)

Qle
iΦl =

1

N

N∑
j=1

Aj ḡω0,σ(Aj)ql,je
iαj . (26)

From these equations, we find that ḡω0,σ(x) and ūβ(x) correspond. If we derive the

concrete equations for order parameters in one model, we immediately obtain them in

the other model. We call these functions the integral kernels because these equations

become integral equations in some cases, as seen later. Furthermore, from the value of

the kernels at x = 0, we have the following correspondence:

T ⇐⇒ 1/[πg(ω0)](=
√

2/πσ), (27)

where the expression in the parentheses is for the Gaussian distribution, and σ is the

standard deviation of the natural frequency ω. The correspondence (27) is also derived

by comparing the phase transition points in both models. Equation (27) implies that

the temperature corresponds to the width of the distribution of the natural frequency

around the center ω0, that is, thermal noise corresponds to the quenched randomness.

Sufficient condition under which both kernels have the same property
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ūβ(x) and ḡω0,σ(x) take finite values at x = 0, and tend to 0 as x tends to ∞. In addition

to these properties, ūβ(x) has the following property:

dūβ
dx

(x) < 0, for x > 0. (28)

A sufficient condition for the property (28) is g′(ω) < 0 for ω > ω0, that is, g(ω) has a

single maximum at ω0 and is strictly decreasing for ω > ω0. Hereafter, we assume this

property for g(ω). Using these properties, we prove the correspondence of solutions in

the following.

Correspondence of solutions

Uniform interaction Jjk = J0/N

In this case, L = 1, a1 = J0, and q1,j = 1.The order parameter is defined as

ReiΘ = RR + iRI =
1

N

N∑
j=1

eiφj . (29)

The Hamiltonian is H = −J0N(R2
R +R2

I )/2+C. For the phase oscillator network, this

is the Kuramoto model. Aj = Ξj = J0R and αj = φ0
j = Θ follow from Eq. (3). From

Eq. (26), the SCE for the order parameter R is

R = J0Rḡω0,σ(J0R). (30)

On the other hand, for the XY model, from Eq. (25), we obtain the SPE as

R = J0Rūβ(J0R). (31)

Let us define v(x) and J̄0 as

v(x) =


q̄ω0,σ(x)/q̄ω0,σ(0) = 4/(πg(ω0))

×
∫ π/2

0
dψg(ω0 + x sinψ) cos2 ψ, Oscillator,

ūβ(x)/ūβ(0) = 2u(βx), XY model,

(32)

J̄0 =

 q̄ω0,σ(0)J0 = πg(ω0)J0/2, Oscillator,

ūβ(0)J0 = βJ0/2, XY model.
(33)

We put x = J0R and ξ = 1/J̄0. Then, SCE and SPE become

ξ = v(x). (34)

Since v(0) = 1 and v(x) decreases monotonically to 0 as x increases from 0 to infinity,

Eq. (34) has the unique solution for any ξ ∈ (0, 1]. Thus, there is a one-to-one corre-

spondence between solutions of the SCE and SPE. The critical point is J̄0 = 1.

Mexican-hat-type interaction
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Now, let us consider the system on a circle. We study the Mexican-hat-type interaction,

which is given by

Jjk = J0/N + (J1/N) cos(θj − θk), (35)

where θj is the coordinate on the circle, θj = 2πj/N, j = 0, 1, · · · , N − 1. The order

parameters other than R are defined as

R1ce
iΘ1c =

1

N

N∑
j=1

cos θje
iφj , (36)

R1se
iΘ1s =

1

N

N∑
j=1

sin θje
iφj . (37)

We define R1 =
√
R2

1c +R2
1s. We use θ instead of j to indicate the location. There are

three nontrivial solutions: the uniform (U) solution (R > 0, R1 = 0), the spinning (S)

solution (R = 0, R1 > 0), and the pendulum (Pn) solution (R > 0, R1 > 0). See Ref. 8

for details. The uniform solution is equivalent to the solution of the Kuramoto model.

Now, let us study the stable spinning solution. Rc = Rs follows. We define J̄1 as

J̄1 =

 q̄ω0,σ(0)J1 = πg(ω0)J1/2, Oscillator,

ūβ(0)J1 = βJ1/2, XY model.
(38)

We put x = J1R1c and η = 1/J̄1. The SCE and SPE become

η = v(x)/2. (39)

Therefore, there exists the unique solution of Eq. (39) for any η ∈ (0, 1/2]. Thus, the

solutions for the SCE and SPE correspond uniquely. The critical point is J̄1 = 2.

Next, we study the stable pendulum solution. We define x = J0R and y = J1R1. The

SCEs and SPEs become

ξ = F (x, y) = 〈v[Λ(x, y, θ)]〉, (40)

η = G(x, y) = 〈v[Λ(x, y, θ)] cos2 θ〉, (41)

〈B〉 =
2

π

∫ π/2

0

dθB, (42)

where Λ(x, y, θ) =
√
x2 + y2 cos2 θ. We obtain

F (x, 0) = v(x), (43)

Fy(x, y) = ∂F (x, y)/∂y < 0, for x ≥ 0, y > 0. (44)

lim
y→∞

F (x, y) = 0 for x ≥ 0. (45)
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Thus, for fixed x ≥ 0, F (x, y) is a decreasing function of y. For ξ ∈ (0, 1], there is the

unique solution of v(x) = ξ. We denote it by x0 = v−1(ξ). Note that x0 = 0 = v−1(1).

Therefore, there exists the unique solution of Eq. (40) for any x ∈ [0, x0].

y = y(ξ, x). (46)

We have the relations y(ξ, x0) = 0 and y(1, 0) = 0. Substituting Eq. (46) into Eq. (41),

we obtain

η = G[x, y(ξ, x)]. (47)

It is proved that G[x, y(ξ, x)] is a strictly increasing function of x for x > 0. Since y(ξ, x)

exists for 0 ≤ x ≤ x0, when G[0, y(ξ, 0)] ≤ η ≤ G[x0, y(ξ, x0)], the solution x(ξ, η) of

Eq. (47) uniquely exists. y(ξ, 0) is determined by

ξ = F [0, y(ξ, 0)] = 〈v[y(ξ, 0) cos θ]〉. (48)

On the other hand, because of v(x0) = ξ, G[x0, y(ξ, x0)] is given by

G[x0, y(ξ, x0)] = G(x0, 0) = 〈v(x0) cos2 θ〉 = ξ/2. (49)

Thus, defining η0(ξ) ≡ G[0, y(ξ, 0)], the solution of Eq. (47) uniquely exists for η0(ξ) ≤
η ≤ ξ/2. The condition η ≤ ξ/2 implies J1 ≥ 2J0, and this is the condition that the Pn

solution emerges from the U solution.8,9) On the other hand, the condition η = η0(ξ)

indicates that the stable Pn solution becomes unstable and then disappears by merging

with the unstable S solution.

Application

Now, let us consider an application of the correspondence between the two models. To

obtain nontrivial results, we study the following associative-memory-type interaction:

Jjk =
J

N

p∑
µ=1

ξµi ξ
µ
j , (50)

where ξµ = (ξµ1 , ξ
µ
2 , ..., ξ

µ
N) is the µth pattern (µ = 1, 2, · · · , p). That is, aµ = J, qµ,j = ξµj .

We assume that p � N and ξµi take values of ±1, and correlate with each other as

follows:

〈ξµi ξνj 〉 =

(
a+ (1− a)δµ,ν

)
δi,j. (51)

The XY model with this interaction has a peculiar solution, that is, there exists a

one-parameter family of solutions of the SPEs.10) We call this solution the continuous

attractor. Here, we derive the SPEs of this solution. We introduce sublattices Λl in
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which the following holds:

(ξ1i , ξ
2
i , · · · , ξ

p
i ) = (η1l , η

2
l , · · · , η

p
l ) for i ∈ Λl, (52)

ηµl+2p−1 = −ηµl , l = 1, 2, · · · , 2p−1. (53)

The number of elements in Λl, |Λl|, is |Λl| = N/2p (l =1, 2, · · · , 2p). Order parameters

are defined as

Rµe
iΘµ = RµR + iRµI =

1

N

N∑
j=1

ξµj e
iφj , µ = 1, · · · , p. (54)

The Hamiltonian is rewritten as

H = −1

2
NJ

p∑
µ=1

R2
µ + C. (55)

From Eq. (19), the SPEs become

Rµe
iΘµ = βJ〈u(xj)

p∑
ν=1

(RνR + iRνI)ξ
ν
j ξ

µ
j 〉, (56)

Ξj =

√√√√(
N∑
j=1

RµRξ
µ
j )

2 + (
N∑
j=1

RµIξ
µ
j )

2, (57)

where Ξj is redefined as Ξj in Eq. (15) divided by J . xj = βJΞj, and 〈·〉 implies

the average over {ξj}. We define the probability Pl that {ξµi } take values in the lth

sublattice. The SPEs are rewritten as

RµR = βJ

p∑
ν=1

cµνRνR, (58)

RµI = βJ

p∑
ν=1

cµνRνI, (59)

cµν = 2
2p−1∑
l=1

Plulη
µ
l η

ν
l = cνµ, (60)

where ul = u(xl), xl = βJΞl, and Ξl is Ξj evaluated at the lth sublattice. By defining

R =
√∑p

µ=1R
2
µ, we obtain additional equations from Eqs. (58) and (59) as

R2 =
1

2p−1

2p−1∑
l=1

(
xl
βJ

)2

, (61)

R2 =
2

βJ

2p−1∑
l=1

Plulx
2
l . (62)
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The SPEs of the continuous attractor are

cµν = δµν
1

βJ
. (63)

Hereafter, we study the case a = 0 for simplicity. For p = 2, from Eq. (63), u1 = u2 =

1/(βJ), and thus x1 = x2 follows. From Eq. (61), we obtain R = Ξ1 = x1/(βJ). Thus,

the SPE is rewritten as

ūβ(JR) = 1/J, (64)

which determines R. Thus, the continuous attractor is given by

0 ≤ R1 ≤ R, R2
1 +R2

2 = R2. (65)

This implies that any point (R1, R2) on the quarter of the circle connecting two points

representing patterns ξ1 and ξ2 is a solution. For general p, any point on the quarter

of the circle connecting any two points representing patterns ξµ and ξν is a continuous

attractor. We performed Markov chain Monte Carlo (MCMC) simulations for p = 2

and 3. We show the result for p = 2 in Fig. 1. We note that the trajectories of R1 and

R2 wander but R is almost constant. As seen from Fig. 1(c), theoretical and numerical

results agree quite well. Next, let us study the phase oscillator network with the same

(a)
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 1

 0  50  100  150  200  250  300  350  400  450  500

R

R1

R2

time [×100 mcs]

(b)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

R2

R1

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

R

T

Fig. 1. XY model. J = 1. (a), (b) Time series of R1, R2, and R, and trajectories in (R1, R2) space

obtained by Monte Carlo simulations. N = 104. T = 0.4. (c) T dependence of R. Curve, theoretical

results; symbols, numerical results. N = 104.

interaction. The SCE is immediately obtained by the correspondence of the integral

kernels,

q̄ω0,σ(JR) = 1/J. (66)

This is simply the SCE of the Kuramoto model. Since we have the same relation as

Eq. (65), we also obtain the continuous solution. We performed numerical integrations
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of Eq. (1) for p = 2 and 3. We took a Gaussian distribution with a mean 0 and a

standard deviation σ for g(ω). We used the Euler method with the time increment

∆t = 0.1. See Fig. 2. There should exist continuous stationary states, but instead,

we found a noisy limit cycle oscillation. The reason for this is considered as follows.

In the derivation of the SCE (21), the desynchronized oscillators do not contribute.

However, in numerical simulations, the desynchronized oscillators contribute to the

dynamics because N is finite. Since the continuous stationary states easily move in the

marginally stable direction by perturbations, the trajectories move on the manifold of

R2
1 + R2

2 = R2. This is confirmed by Fig. 2(b). Figure 2(c) on the σ dependence of R

shows fairly good agreement between the theoretical results for the continuous solution

and the numerical results for the limit cycle.

(a)
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 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 20000  21000  22000  23000  24000  25000

R

R1

R2

t

(b)
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 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

R2

R1

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

R

σ

Fig. 2. Phase oscillator network. J = 1 (a), (b) Numerical results of time series of R1, R2, and R,

and trajectories in (R1, R2) space obtained by the Euler method. N = 104, σ =
√

π
2T with T = 0.4.

(c) σ dependence of R. Curve, theoretical results; symbols, numerical results. N = 104.

In summary, we studied the correspondence between the phase oscillator networks

and the classical XY models with the same infinite-range interactions. Assuming a

class of interactions, we found the correspondence between the integral kernel of the

SCEs for the oscillator network and that of the SPEs for the XY model. We found a

sufficient condition under which the integral kernel of the SCEs for the oscillator network

has the same feature as that of the SPEs for the XY model. That is, the probability

density of the natural frequency distribution is one-humped. Furthermore, we found

that the quenched randomness (distributed natural frequencies) corresponds to thermal

noise. To study the correspondence of solutions in both models, we investigated the

uniform interaction and the Mexican-hat-type interaction on a circle. We proved that

the solutions uniquely correspond in both models. Upon applying this correspondence,

we studied the associative-memory-type interaction, for which the XY model has a
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peculiar one-parameter family of solutions called the continuous attractor. We found

that the continuous solution is not stable in the oscillator network, and instead a noisy

limit cycle appears, which lies on the manifold where the continuous solutions exist. We

consider that this is caused by the desynchronized oscillators and is a finite size effect.

When g(ω) is a uniform distribution and is therefore not one-humped, we can still

prove the one-to-one correspondence of solutions for some interactions in both models.

This will be reported elsewhere.

For the interactions studied in this paper, there exist several types of solution, and

we found that the stabilities of the corresponding solutions in both models are the same

except for the continuous solution. To study the stability of solutions in the oscillator

network, we have to derive the evolution equations for order parameters and this is

a very difficult problem to solve.12) The correspondence between the stabilities of the

solutions in both models remains a future problem.
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5) J. A. Acebrón, L. L. Bonilla, C. J. Pérez Vicente and F. Ritort, Rev. Mod. phys.

77, 137 (2005), and papers cited therein.

6) R. E.Mirollo and S. H. Strogatz, J. Nonlinear Sci., 17, 309 (2007); J. P. L. Hatchett

and T. Uezu, Phys. Rev. E 78, 036106 (2008); J. P. L. Hatchett and T. Uezu, J.

Phys. Soc. Jpn., 78, 024001 (2009); H. Chiba and I. Nishikawa, Chaos, 21, 043103

(2011).

7) For example, H. E. Stanley, in Phase Transitions and Critical Phenomena, ed. C.

Domb and M. S. Green (Academic Press, London, 1974) Vol. 3, p. 486.

8) T. Uezu, T. Kimoto, and M. Okada, J. Phys. Soc. Jpn., 81, 073001 (2012); T.

Uezu, T. Kimoto, and M. Okada, Phys. Rev. E 88, 032918 (2013).

9) T. Kimoto, T. Uezu and M. Okada, J. Phys. Soc. Jpn., 80, 074005 (2011); T. Uezu,

T. Kimoto, and M. Okada, J. Phys. Soc. Jpn., 81, 064001 (2012).

10) T. Kimoto, T. Uezu, and M. Okada, J. Phys. Soc. Jpn., 82, 124002 (2013).

11) J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, (Oxford Univer-

sity Press, Oxford, 2002) 4th ed., p. 5.

12) E. Ott and T. M. Antonsen, Chaos 18, 037113 (2008); E. Ott and T. M. Antonsen,

Chaos 19, 023117 (2009); E. A. Martens, E. Barreto, S. H. Strogatz, E. Ott, P. So,

and T. M. Antonsen, Phys. Rev. E 79, 026204 (2009); D. Pazó and E. Montbrió,
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