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We describe a solvable model of a phase oscillator network on a circle with infinite-
range Mexican-hat-type interaction. We derive self-consistent equations of the order
parameters and obtain three non-trivial solutions characterized by the rotation number.
We also derive relevant characteristics such as the location-dependent distributions of
the resultant frequencies of desynchronized oscillators. Simulation results closely agree
with the theoretical ones.
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It is ubiquitously observed in nature that a system composed of many active elements exhibits

collective behavior as a whole. A typical example is the synchronization of populations of oscillators,

e.g., simultaneous emission of light by fireflies, the rhythm of the heart composed of a population

of cardiac muscle cells, and circadian rhythms.1,2

Pioneering studies on such behavior were done by Winfree3 and Kuramoto.4 In particular,

Kuramoto regarded synchronization as a phase transition and described a prototype model of the

phase transition in non-equilibrium systems. The model, today called the “Kuramoto model,” is a

coupled oscillator system in which an oscillator interacts with all other oscillators with the same

strength. Each oscillator has its own natural frequency, but its amplitude is constant and the state

variable is its phase. In general, when nonlinear dynamical systems with stable limit cycle oscillators

are weakly coupled, the whole system can be described by the phases of the oscillators, and the

dynamical equation is reduced to the evolution equation for phases.4 The Kuramoto model was used

to analytically prove for the first time that, as the interaction strength increases from zero, a phase

transition occurs, from a desynchronized state in which each oscillator independently oscillates

with its own frequency to a synchronized state in which a large number of oscillators oscillate with

the same frequency.5 Since Kuramoto’s analysis of globally coupled oscillators, oscillator networks

with short-range and with intermediate-range interactions have been studied.6 Oscillators with

global and random interactions7 and with sparse and random interactions8 have also been studied.

Furthermore, the stability of the solutions with the Kuramoto model has been studied.9,10 A
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review of the Kuramoto model and its extensions, such as inclusion of a noise term, is available

elsewhere.11 There have also been extensive studies on the statistical and dynamical properties of

the mean-field XY model (HMF XY model) of conservative dynamical systems corresponding to

oscillator network models of dissipative dynamical systems.12,13

Although there have been many studies on oscillator networks, no solvable model defined in a

finite-dimensional space has yet been introduced. It is greatly difficult to study systems with short-

and intermediate-range interactions analytically, so we cannot help relying on numerical simulation

to study such systems. To further advance the study of the synchronization–desynchronization

transition of active elements, it is quite desirable to introduce a solvable model that extends the

Kuramoto model.

In this paper, we describe a phase oscillator network on a circle, and, to make analytical

treatment possible, we assume infinite-range interaction and that the strength and sign of the

interaction between two oscillators depend on the spatial distance between them. We specifically

adopt the Mexican-hat-type interaction, which was introduced to model the creation of feature

extraction cells in neuroscience and expresses the properties that a firing cell excites nearby cells

and inhibits distant cells.14 For an XY model on a circle with this interaction, it was found that

there exists a peculiar solution, the pendulum solution, in which the phases of the XY spins do

not rotate but oscillate as the locations change on the circle.15 In the phase oscillator network,

we show that the self-consistent equations (SCEs) of the order parameters for stationary states

and the relevant quantities can be exactly derived theoretically, and that there exists a pendulum

solution as in the XY model.

Now we explain the phase oscillator network. Let φi and θi be the phase and location

on the circle of the i-th oscillator. We regard the i-th oscillator as a two-dimensional vector,

Xi = (cosφi, sinφi). We assume that oscillators are located uniformly on the circle; that is,

θi = i2π/N (i = 0, · · · , N − 1). The evolution equation for the i-th phase is

d

dt
φi = ωi +

1

N

∑
j

Jij sin(φj − φi), (1)

which is derived under the rather general situation that stable limit cycle oscillators are weakly

coupled. Here, ωi is the natural frequency and is drawn from the probability density g(ω), which

is assumed to be one-humped at ω = ω0 and symmetric with respect to ω0. In our numerical

simulations, we used a Gaussian distribution g(ω) with a mean of zero and a standard deviation σ.

Let us explain the interaction we use in this paper in detail. We impose translational symmetry

on Jij , i.e., Jij takes the form Jij = J(θi − θj). Furthermore, we assume Jij = Jji. Thus, J(θ) is

an even function of θ. Therefore, the Fourier expansion of J(θ) is given by

J(θ) = J0 + J1 cos(θ) + J2 cos(2θ) + · · · . (2)
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In this study, we treat the case in which only J0 and J1 are non-zero, so the interaction is

Jij = J0 + J1 cos(θi − θj), (3)

which has the properties expressed by the Mexican-hat-type interaction described above.

The order parameters are defined as

ReiΘ =
1

N

∑
j

eiφj ,

Rce
iΘc =

1

N

∑
j

cos θje
iφj , Rse

iΘs =
1

N

∑
j

sin θje
iφj .

Using these order parameters, we rewrite the evolution equation (1) as

d

dt
φi = ωi + J0R sin(Θ− φi)

+J1[Rc cos θi sin(Θc − φi) +Rs sin θi sin(Θs − φi)]. (4)

Now we derive the SCEs. Without loss of generality, we assume ω0 = 0. Since we study stationary

states, let us assume that amplitudes and phases tend to constant values as t tends to infinity. We

further rewrite eq. (4) as

d

dt
φj = ωj −Aj sin(φj − αj). (5)

The following relation is derived from a comparison of eqs. (4) and (5):

Aje
iαj = J0Re

iΘ + J1[Rc cos θje
iΘc +Rs sin θje

iΘs ]. (6)

Hereafter, we use θ to identify each oscillator, so Aθ is expressed as

A2
θ = (J0R)

2 + J2
1{(Rc cos θ)2 + (Rs sin θ)

2

+2RcRs cos(Θ̃c − Θ̃s) sin θ cos θ}

+2J0J1R{Rc cos Θ̃c cos θ +Rs cos Θ̃s sin θ}, (7)

where Θ̃c ≡ Θc −Θ, Θ̃s ≡ Θs −Θ. Defining ψθ ≡ φθ − αθ transforms the evolution equation into

d

dt
ψθ = ωθ −Aθ sinψθ. (8)

From this equation, we can develop a theory by following Kuramoto’s argument. For the synchro-

nized oscillators satisfying |ωθ| ≤ Aθ, we obtain the entrained phase ψ∗
θ and the number density of

the synchronized oscillators with the value of phase ψ at location θ, ns(θ, ψ), as

ψ∗
θ = Sin−1(

ωθ
Aθ

), (9)

ns(θ, ψ) = g(Aθ sinψ)Aθ cosψ, |ψ| ≤ π

2
, (10)
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where Sin−1x is the principal value and its range is [−π
2
,
π

2
]. For the desynchronized oscillators

satisfying |ωθ| > Aθ, we obtain the solution of differential equation (8) and the number density of

the desynchronized oscillators with the value of phase ψ at location θ, nds(θ, ψ), as

ψθ(t) = ω̃θt+ hθ(ω̃θt), (11)

ω̃θ = ωθ

√
1− (

Aθ
ωθ

)2, (12)

nds(θ, ψ) =
1

π

∫ ∞

Aθ

dx x g(x)

√
x2 −A2

θ

x2 −A2
θ sin

2 ψ
, (13)

where ω̃θ is the resultant frequency and hθ(t) is a periodic function of t with period 2π. The original

phase is φθ(t) = ω0t+ ψθ(t) + αθ = (ω0 + ω̃θ)t+ hθ(ω̃θt) + αθ and then the resultant frequency of

φθ(t) is ω0 + ω̃θ. The function hθ(ω̃θt) represents fluctuations around the uniform rotation of the

vector Xθ with the angular frequency ω0 + ω̃θ. In general, ω0 and ω̃θ is incommensurate. There-

fore, if we observe φθ(t) in modulo 2π, it behaves quasi periodically, and the solution represents

the desynchronized oscillation. Note that the entrained phases and the distribution of resultant

frequencies depend on the oscillator locations, in general. From eq. (13), nds(θ, ψ + π) = nds(θ, ψ)

is derived, and
∫ 2π
0 nds(θ, ψ)e

iψdψ = 0 follows. Thus, only the synchronized oscillators contribute

to the order parameters:

ReiΘ =

∫ π

−π
dψns(ψ)e

iψ+iαθ , (14)

Rce
iΘc =

∫ π

−π
dψ

1

2π

∫ 2π

0
dθns(θ, ψ) cos θe

iψ+iαθ , (15)

Rse
iΘs =

∫ π

−π
dψ

1

2π

∫ 2π

0
dθns(θ, ψ) sin θe

iψ+iαθ , (16)

where ns(ψ) =
1

2π

∫ 2π

0
dθns(θ, ψ). Substituting the expression for ns(θ, ψ) into these equations,

and after some algebra, from the real parts of these equations, we obtain

R = J0R〈1〉+ J1(Rcf cos Θ̃c +Rsg cos Θ̃s), (17)

Rc = J0Rf cos Θ̃c + J1{Rca+Rsc cos(Θ̃c − Θ̃s)}, (18)

Rs = J0Rg cos Θ̃s + J1{Rcc cos(Θ̃c − Θ̃s) +Rsb}, (19)

a = 〈cos2 θ〉, b = 〈sin2 θ〉, c = 〈sin θ cos θ〉,

f = 〈cos θ〉, g = 〈sin θ〉,

〈B〉 = 1

π

∫ π/2

0
dψ

∫ 2π

0
dθg(Aθ sinψ) cos

2 ψ B.

These are the SCEs for R,Rc, and Rs. Furthermore, we derive the following auxiliary equations
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from the imaginary parts of eqs. (14)-(16):

J0Rf sin Θ̃c + J1Rsc sin(Θ̃c − Θ̃s) = 0, (20)

J0Rg sin Θ̃s − J1Rcc sin(Θ̃c − Θ̃s) = 0. (21)

From these equations, the phases of the order parameters are completely determined. The detailed

results will be reported elsewhere. There are four solutions of the SCEs, and they are classified on

the basis of the values of R and R1 =
√
R2
c +R2

s as

P: para magnetic solution, (R,R1) = (0, 0),

U: uniform solution, (R,R1) = (+, 0),

S: spinning solution, (R,R1) = (0,+),

Pn: pendulum solution, (R,R1) = (+,+).

Now, let us consider the physical meanings of these solutions. To characterize the solutions

further, we define the rotation number of a solution. The rotation number is the number of rotations

of synchronized oscillator X∗
θ = (cosφ∗θ, sinφ

∗
θ) around the origin in space X as location θ changes

by 2π. In the P solution, all oscillators desynchronize, whereas in the other three solutions, an

extensive number of oscillators synchronize and their directions are locked. In the U solution, φ∗θ

randomly takes a value in the interval [−π
2
+Θ,

π

2
+Θ] irrespective of the location of the oscillator,

so the rotation number is 0. In the S solution, φ∗θ linearly depends on θ, and the rotation number

is 1. In the Pn solution, φ∗θ fluctuates and the rotation number is 0. See Figs. 1(a)-(c).
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Fig. 1. θ dependencies of entrained phases φ∗
θ . Line plots: theory; +: simulation (N = 10000, σ = 0.2, J0 = 1.2J0,c).

Theoretical values are calculated by using the eq. (9). In the figures, these values are connected by straight lines
to make it easier to compare them with numerical results. Only 1% of entrained phases are depicted. (a) U
solution, J1/J0 = 1.9, (b) S solution, J1/J0 = 2.1, (c) Pn solution, J1/J0 = 2.1.

We display the phase diagram in the scaled parameter space (J0/σ, J1/σ) in Fig. 2(a).
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Fig. 2. (a) Phase diagram in scaled parameter space. Plot points represent simulation results; curves represent
theoretical results. Vertical line represents parameters shown in (b). (b) J1/σ dependencies of order parame-
ters. J0/σ = 4. Solid curves represent stable solutions; dashed curves represent unstable solutions, which have
superscript U, e.g., SU.

Let us examine the bifurcation structures. As shown in the phase diagram in Fig. 2(a), the S

and U solutions and the S and Pn solutions can coexist. We display the J1/σ dependencies of order

parameters R and R1 with J0/σ fixed to 4 in Fig. 2(b). These results show that the unstable Pn

solution determines the boundary of the coexistent regions of the S and U solutions and that of the

S and Pn solutions. Furthermore, we note that the Pn solution continuously bifurcates from the

U solution. Taking into account these observations, we derived the formulas for the boundaries of

bistable regions by using the unstable Pn solution and relevant stable solutions. In Fig. 2(a), the

theoretically obtained boundaries are represented by curves. The theoretical results are in good

agreement with the simulation results.

Now, let us examine the physical meanings of the phase transitions. There are five boundaries

in the phase diagram shown in Fig. 2(a). The transition from the P to U phase takes place

continuously at J0 = J0,c ≡ 2/(g(ω0)π), and this is the same transition as in the Kuramoto model.

The transition from the P to S phase takes place continuously at J1 = J1,c ≡ 2J0,c. In the P phase,

the rotation number is not defined while it is 1 in the S phase. The transition from the U to Pn

phase takes place continuously at J1 = 2J0. In this case, the rotation number in both phases is

0. However, as is shown in Figs. 1(a) and (c), the directions of two synchronized oscillators do

not correlate in the U phase but correlate weakly in the Pn phase. As noted from Fig. 2(b), at

the two bistable region boundaries, the stable S and unstable Pn solutions and the stable Pn and

unstable Pn solutions merge, and the stable S and stable Pn solutions disappear. The unstable Pn

solution differs from the paired solution of the stable Pn solution because the phases of the order

parameters are different. That is, these are a new type of instability that does not exist in the
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Kuramoto model.

We show theoretical and numerical results for the J0 dependencies of the order parameters in Fig.
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Fig. 3. J0 dependencies of order parameters. J1 = 2.1J0. Curves represent theory; symbols represent simulation
results. N = 20000, σ = 0.2. Averages were taken for 20 samples. Solid curve and +: R of Pn solution; dashed
curve and ×: R1 of Pn solution; dashed dotted curve and square: R1 of S solution. Vertical lines are error bars.
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Fig. 4. Distribution G(ω̃, θ) of resultant frequencies for Pn solution. Curve represents theory; × represents simulation
results (N = 100000, σ = 0.2, J1/J0 = 2.1, J0 = 1.2J0,c). (a) θ = 0.05× 2π, (b) θ = 0.25× 2π.

3, those for the location-dependent resultant frequency distribution G(ω̃, θ) for different θ for the

Pn solution in Fig. 4, and those for the θ dependencies of the entrained phases φ∗θ for the U, S,

and Pn solutions in Figs. 1(a)-(c). The agreement between the theoretical and numerical results is

excellent. To investigate the desynchronized oscillators, we constructed a Lorenz plot of time series

sin(φi(t)) for the Pn solution (Fig. 5). The Lorenz plot is defined as the mapping from the difference

∆tl = tl+1 − tl to ∆tl+1, where tl and tl+1 are the successive times that satisfy cos((φi(tl)) = 1

and cos(φi(tl+1)) = 1, respectively. As shown in Fig. 5, the simulation results are scattered in the
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Fig. 5. Lorenz plot for desynchronized oscillator for Pn solution. ×: theory; +: simulation (N = 10000, σ =
0.2, J1/J0 = 2.1, J0 = 1.2J0,c).

Lorenz plot. This indicates that the trajectory of a desynchronized oscillator behaves chaotically

even though theoretically it is quasi-periodic. However, in most of our numerical results, e.g.,

for the resultant frequency distribution, the larger the N , the better the agreement between the

theoretical and numerical results. Our results suggest that the system behaves quasi-periodically

in the limit of N infinity.

In summary, we have extended the Kuramoto model, which is a prototype model of the

synchronization–desynchronization phase transition in non-equilibrium systems, and have proposed

a solvable model of a phase oscillator network on a circle with infinite-range Mexican-hat-type in-

teraction. We derived two auxiliary equations by expressing the order parameters by the number

density of the oscillators. We used them to analytically determine the phases of the order parame-

ters, derive self-consistent equations, and obtain three non-trivial solutions that are characterized

by the order parameters and the rotation numbers of the synchronized oscillators X∗
θs. We drew

phase diagrams by using formulas for the phase boundaries derived using the unstable Pn solution,

found that the unstable Pn solution differs from the paired solution of the stable synchronized so-

lution, and the transition due to pair annihilation of the solution and the relevant solution is a new

type of instability that does not exist in the Kuramoto model. We also analytically obtained the

location-dependent distribution of the resultant frequencies and entrained phases and validated the

theoretical results by simulation, except for the chaotic behavior of the desynchronized oscillators.

Our numerical results suggest that the system behaves quasi-periodically in the limit of N infinity.

In general, when nonlinear dynamical systems that have stable limit cycle oscillators are weakly

coupled, the whole system can be described by phases of oscillators, and the dynamical equation is

reduced to the evolution equation for phases with general interaction Jij . Therefore, by applying the

present method to weakly coupled dynamical systems on a circle, we should be able to obtain new
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types of solutions and new types of synchronization–desynchronization phase transitions. Several

such studies are now underway.
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